Normalized defining polynomial
\( x^{16} - 3 x^{15} + 6 x^{14} - 9 x^{13} + 16 x^{12} - 15 x^{11} + 12 x^{10} - 27 x^{9} + 72 x^{8} - 93 x^{7} + 102 x^{6} - 39 x^{5} - 23 x^{4} - 72 x^{3} + 216 x^{2} - 192 x + 64 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(29863208046433665024=2^{18}\cdot 3^{12}\cdot 11^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $16.49$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{3}$, $\frac{1}{4} a^{7} - \frac{1}{4} a^{6} - \frac{1}{4} a^{5} - \frac{1}{4} a^{4} + \frac{1}{4} a^{3} + \frac{1}{4} a^{2}$, $\frac{1}{4} a^{8} - \frac{1}{4} a^{2}$, $\frac{1}{4} a^{9} - \frac{1}{4} a^{3}$, $\frac{1}{8} a^{10} - \frac{1}{8} a^{9} - \frac{1}{8} a^{8} - \frac{1}{8} a^{4} + \frac{1}{8} a^{3} + \frac{1}{8} a^{2}$, $\frac{1}{16} a^{11} - \frac{1}{16} a^{10} + \frac{1}{16} a^{9} - \frac{1}{8} a^{8} - \frac{1}{8} a^{7} - \frac{1}{8} a^{6} - \frac{3}{16} a^{5} + \frac{3}{16} a^{4} + \frac{1}{16} a^{3} - \frac{1}{4} a^{2} - \frac{1}{2} a$, $\frac{1}{16} a^{12} - \frac{1}{16} a^{9} - \frac{1}{16} a^{6} - \frac{1}{4} a^{5} - \frac{7}{16} a^{3} + \frac{1}{4} a^{2} - \frac{1}{2} a$, $\frac{1}{16} a^{13} - \frac{1}{16} a^{10} - \frac{1}{16} a^{7} - \frac{1}{4} a^{6} + \frac{1}{16} a^{4} + \frac{1}{4} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{64} a^{14} - \frac{1}{32} a^{13} + \frac{1}{64} a^{12} - \frac{1}{32} a^{11} + \frac{3}{64} a^{10} - \frac{3}{32} a^{9} + \frac{5}{64} a^{8} - \frac{1}{16} a^{7} - \frac{3}{64} a^{6} - \frac{1}{16} a^{5} + \frac{3}{64} a^{4} + \frac{3}{8} a^{3} - \frac{1}{2} a$, $\frac{1}{8376128} a^{15} + \frac{54051}{8376128} a^{14} - \frac{156265}{8376128} a^{13} - \frac{208493}{8376128} a^{12} + \frac{68741}{8376128} a^{11} - \frac{395539}{8376128} a^{10} - \frac{791005}{8376128} a^{9} + \frac{793357}{8376128} a^{8} - \frac{739871}{8376128} a^{7} - \frac{1687499}{8376128} a^{6} + \frac{355707}{8376128} a^{5} + \frac{2078347}{8376128} a^{4} + \frac{1010345}{2094032} a^{3} + \frac{208513}{523508} a^{2} - \frac{50043}{261754} a - \frac{29246}{130877}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{62277}{2094032} a^{15} - \frac{76595}{1047016} a^{14} + \frac{298315}{2094032} a^{13} - \frac{202011}{1047016} a^{12} + \frac{781849}{2094032} a^{11} - \frac{61407}{261754} a^{10} + \frac{422661}{2094032} a^{9} - \frac{591891}{1047016} a^{8} + \frac{3536663}{2094032} a^{7} - \frac{877545}{523508} a^{6} + \frac{4050129}{2094032} a^{5} + \frac{221907}{1047016} a^{4} - \frac{87212}{130877} a^{3} - \frac{1854359}{1047016} a^{2} + \frac{615688}{130877} a - \frac{275240}{130877} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 10720.0696853 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_8:C_2^2$ (as 16T38):
| A solvable group of order 32 |
| The 11 conjugacy class representatives for $C_8:C_2^2$ |
| Character table for $C_8:C_2^2$ |
Intermediate fields
| \(\Q(\sqrt{-3}) \), \(\Q(\sqrt{33}) \), \(\Q(\sqrt{-11}) \), 4.2.8712.1, 4.2.8712.2, \(\Q(\sqrt{-3}, \sqrt{-11})\), 8.2.5464723968.2, 8.2.5464723968.1, 8.0.75898944.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 8 siblings: | data not computed |
| Degree 16 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.2.0.1 | $x^{2} - x + 1$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 2.2.0.1 | $x^{2} - x + 1$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 2.4.6.2 | $x^{4} - 2 x^{2} + 4$ | $2$ | $2$ | $6$ | $C_2^2$ | $[3]^{2}$ | |
| 2.4.6.2 | $x^{4} - 2 x^{2} + 4$ | $2$ | $2$ | $6$ | $C_2^2$ | $[3]^{2}$ | |
| 2.4.6.2 | $x^{4} - 2 x^{2} + 4$ | $2$ | $2$ | $6$ | $C_2^2$ | $[3]^{2}$ | |
| $3$ | 3.8.6.1 | $x^{8} + 9 x^{4} + 36$ | $4$ | $2$ | $6$ | $Q_8$ | $[\ ]_{4}^{2}$ |
| 3.8.6.1 | $x^{8} + 9 x^{4} + 36$ | $4$ | $2$ | $6$ | $Q_8$ | $[\ ]_{4}^{2}$ | |
| $11$ | 11.8.4.1 | $x^{8} + 484 x^{4} - 1331 x^{2} + 58564$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 11.8.4.1 | $x^{8} + 484 x^{4} - 1331 x^{2} + 58564$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |