Normalized defining polynomial
\( x^{16} - 3 x^{15} + 3 x^{14} + x^{13} - 4 x^{12} + 2 x^{11} + 5 x^{10} - 9 x^{9} + 3 x^{8} + 9 x^{7} + \cdots + 1 \)
Invariants
Degree: | $16$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
oscar: degree(K)
| |
Signature: | $[0, 8]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
oscar: signature(K)
| |
Discriminant: | \(29862086714453125\) \(\medspace = 5^{8}\cdot 11^{4}\cdot 151^{2}\cdot 229\) | sage: K.disc()
gp: K.disc
magma: OK := Integers(K); Discriminant(OK);
oscar: OK = ring_of_integers(K); discriminant(OK)
| |
Root discriminant: | \(10.71\) | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(OK))^(1/Degree(K));
oscar: (1.0 * dK)^(1/degree(K))
| |
Galois root discriminant: | $5^{1/2}11^{1/2}151^{1/2}229^{1/2}\approx 1379.0739646588938$ | ||
Ramified primes: | \(5\), \(11\), \(151\), \(229\) | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(OK));
oscar: prime_divisors(discriminant((OK)))
| |
Discriminant root field: | \(\Q(\sqrt{229}) \) | ||
$\card{ \Aut(K/\Q) }$: | $2$ | sage: K.automorphisms()
magma: Automorphisms(K);
oscar: automorphisms(K)
| |
This field is not Galois over $\Q$. | |||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{57}a^{15}-\frac{16}{57}a^{14}-\frac{17}{57}a^{13}-\frac{2}{19}a^{12}+\frac{17}{57}a^{11}+\frac{3}{19}a^{10}+\frac{2}{57}a^{9}+\frac{22}{57}a^{8}+\frac{2}{57}a^{7}-\frac{17}{57}a^{6}-\frac{16}{57}a^{5}-\frac{8}{19}a^{4}-\frac{7}{19}a^{3}-\frac{13}{57}a^{2}-\frac{2}{19}a+\frac{22}{57}$
Monogenic: | Not computed | |
Index: | $1$ | |
Inessential primes: | None |
Class group and class number
Trivial group, which has order $1$
Unit group
Rank: | $7$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
oscar: rank(UK)
| |
Torsion generator: | \( -1 \) (order $2$) | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
oscar: torsion_units_generator(OK)
| |
Fundamental units: | $\frac{31}{57}a^{15}-\frac{97}{57}a^{14}+\frac{100}{57}a^{13}-\frac{5}{19}a^{12}-\frac{43}{57}a^{11}+\frac{17}{19}a^{10}+\frac{62}{57}a^{9}-\frac{230}{57}a^{8}+\frac{119}{57}a^{7}+\frac{100}{57}a^{6}-\frac{97}{57}a^{5}-\frac{1}{19}a^{4}+\frac{11}{19}a^{3}-\frac{4}{57}a^{2}+\frac{33}{19}a-\frac{2}{57}$, $a$, $\frac{2}{57}a^{15}+\frac{25}{57}a^{14}-\frac{91}{57}a^{13}+\frac{34}{19}a^{12}-\frac{23}{57}a^{11}-\frac{13}{19}a^{10}+\frac{61}{57}a^{9}+\frac{44}{57}a^{8}-\frac{224}{57}a^{7}+\frac{137}{57}a^{6}+\frac{82}{57}a^{5}-\frac{35}{19}a^{4}+\frac{5}{19}a^{3}+\frac{31}{57}a^{2}-\frac{4}{19}a+\frac{44}{57}$, $\frac{16}{19}a^{15}-\frac{9}{19}a^{14}-\frac{44}{19}a^{13}+\frac{75}{19}a^{12}-\frac{13}{19}a^{11}-\frac{27}{19}a^{10}+\frac{70}{19}a^{9}+\frac{29}{19}a^{8}-\frac{158}{19}a^{7}+\frac{127}{19}a^{6}+\frac{105}{19}a^{5}-\frac{118}{19}a^{4}-\frac{51}{19}a^{3}+\frac{77}{19}a^{2}-\frac{1}{19}a-\frac{9}{19}$, $\frac{4}{19}a^{15}-\frac{45}{19}a^{14}+\frac{122}{19}a^{13}-\frac{119}{19}a^{12}-\frac{27}{19}a^{11}+\frac{131}{19}a^{10}-\frac{49}{19}a^{9}-\frac{178}{19}a^{8}+\frac{331}{19}a^{7}-\frac{125}{19}a^{6}-\frac{292}{19}a^{5}+\frac{284}{19}a^{4}+\frac{144}{19}a^{3}-\frac{261}{19}a^{2}+\frac{14}{19}a+\frac{69}{19}$, $\frac{121}{57}a^{15}-\frac{283}{57}a^{14}+\frac{223}{57}a^{13}+\frac{24}{19}a^{12}-\frac{166}{57}a^{11}+\frac{21}{19}a^{10}+\frac{470}{57}a^{9}-\frac{644}{57}a^{8}+\frac{128}{57}a^{7}+\frac{565}{57}a^{6}-\frac{283}{57}a^{5}-\frac{113}{19}a^{4}+\frac{84}{19}a^{3}+\frac{23}{57}a^{2}-\frac{14}{19}a-\frac{17}{57}$, $\frac{24}{19}a^{15}-\frac{61}{19}a^{14}+\frac{67}{19}a^{13}-\frac{11}{19}a^{12}-\frac{48}{19}a^{11}+\frac{64}{19}a^{10}+\frac{67}{19}a^{9}-\frac{156}{19}a^{8}+\frac{105}{19}a^{7}+\frac{86}{19}a^{6}-\frac{156}{19}a^{5}+\frac{51}{19}a^{4}+\frac{85}{19}a^{3}-\frac{103}{19}a^{2}+\frac{8}{19}a+\frac{53}{19}$ | sage: UK.fundamental_units()
gp: K.fu
magma: [K|fUK(g): g in Generators(UK)];
oscar: [K(fUK(a)) for a in gens(UK)]
| |
Regulator: | \( 29.6941711926 \) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
oscar: regulator(K)
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{8}\cdot 29.6941711926 \cdot 1}{2\cdot\sqrt{29862086714453125}}\cr\approx \mathstrut & 0.208698863025 \end{aligned}\]
Galois group
$C_4^4.C_2\wr D_4$ (as 16T1823):
A solvable group of order 32768 |
The 230 conjugacy class representatives for $C_4^4.C_2\wr D_4$ |
Character table for $C_4^4.C_2\wr D_4$ |
Intermediate fields
\(\Q(\sqrt{5}) \), 4.2.275.1, 8.2.11419375.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Degree 16 siblings: | data not computed |
Degree 32 siblings: | data not computed |
Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | ${\href{/padicField/2.8.0.1}{8} }{,}\,{\href{/padicField/2.4.0.1}{4} }^{2}$ | ${\href{/padicField/3.8.0.1}{8} }{,}\,{\href{/padicField/3.4.0.1}{4} }{,}\,{\href{/padicField/3.2.0.1}{2} }^{2}$ | R | $16$ | R | $16$ | ${\href{/padicField/17.4.0.1}{4} }^{4}$ | ${\href{/padicField/19.4.0.1}{4} }^{2}{,}\,{\href{/padicField/19.2.0.1}{2} }^{4}$ | ${\href{/padicField/23.4.0.1}{4} }^{3}{,}\,{\href{/padicField/23.2.0.1}{2} }^{2}$ | ${\href{/padicField/29.4.0.1}{4} }^{3}{,}\,{\href{/padicField/29.2.0.1}{2} }^{2}$ | ${\href{/padicField/31.8.0.1}{8} }{,}\,{\href{/padicField/31.4.0.1}{4} }^{2}$ | ${\href{/padicField/37.4.0.1}{4} }^{4}$ | ${\href{/padicField/41.4.0.1}{4} }{,}\,{\href{/padicField/41.2.0.1}{2} }^{6}$ | ${\href{/padicField/43.8.0.1}{8} }^{2}$ | ${\href{/padicField/47.4.0.1}{4} }{,}\,{\href{/padicField/47.2.0.1}{2} }^{6}$ | ${\href{/padicField/53.8.0.1}{8} }{,}\,{\href{/padicField/53.4.0.1}{4} }{,}\,{\href{/padicField/53.2.0.1}{2} }^{2}$ | ${\href{/padicField/59.4.0.1}{4} }{,}\,{\href{/padicField/59.2.0.1}{2} }^{4}{,}\,{\href{/padicField/59.1.0.1}{1} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(5\) | 5.16.8.1 | $x^{16} + 160 x^{15} + 11240 x^{14} + 453600 x^{13} + 11536702 x^{12} + 190484240 x^{11} + 2020220586 x^{10} + 13041178608 x^{9} + 45239382035 x^{8} + 65384309200 x^{7} + 52374358166 x^{6} + 35488260768 x^{5} + 46408266743 x^{4} + 66345171264 x^{3} + 136057926318 x^{2} + 159173865296 x + 74196697609$ | $2$ | $8$ | $8$ | $C_8\times C_2$ | $[\ ]_{2}^{8}$ |
\(11\) | 11.4.0.1 | $x^{4} + 8 x^{2} + 10 x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
11.4.0.1 | $x^{4} + 8 x^{2} + 10 x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
11.8.4.1 | $x^{8} + 60 x^{6} + 20 x^{5} + 970 x^{4} - 280 x^{3} + 4664 x^{2} - 5460 x + 2325$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
\(151\) | 151.2.0.1 | $x^{2} + 149 x + 6$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
151.2.0.1 | $x^{2} + 149 x + 6$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
151.4.0.1 | $x^{4} + 13 x^{2} + 89 x + 6$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
151.4.0.1 | $x^{4} + 13 x^{2} + 89 x + 6$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
151.4.2.1 | $x^{4} + 298 x^{3} + 22515 x^{2} + 46786 x + 3373376$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
\(229\) | $\Q_{229}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
$\Q_{229}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
$\Q_{229}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
$\Q_{229}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
$\Q_{229}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
$\Q_{229}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
Deg $2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | ||
Deg $2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | ||
Deg $2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | ||
Deg $2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | ||
Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |