Normalized defining polynomial
\( x^{16} + 3464 x^{14} - 3216 x^{13} + 4898708 x^{12} - 7958096 x^{11} + 3643957168 x^{10} - 7631842416 x^{9} + 1528170097824 x^{8} - 3619337419376 x^{7} + 358605823359368 x^{6} - 892387439161696 x^{5} + 43925474650991112 x^{4} - 109475242669266480 x^{3} + 2467664760780016224 x^{2} - 5494406389961891840 x + 55151228745540959074 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(29786305681426893421813381491703267748478976=2^{66}\cdot 7^{6}\cdot 193^{4}\cdot 223^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $521.35$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 7, 193, 223$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $\frac{1}{31} a^{13} - \frac{14}{31} a^{12} + \frac{4}{31} a^{11} - \frac{12}{31} a^{10} - \frac{12}{31} a^{9} + \frac{4}{31} a^{8} + \frac{2}{31} a^{7} - \frac{14}{31} a^{6} - \frac{2}{31} a^{5} + \frac{8}{31} a^{4} + \frac{13}{31} a^{3} + \frac{11}{31} a^{2} + \frac{2}{31} a - \frac{11}{31}$, $\frac{1}{31} a^{14} - \frac{6}{31} a^{12} + \frac{13}{31} a^{11} + \frac{6}{31} a^{10} - \frac{9}{31} a^{9} - \frac{4}{31} a^{8} + \frac{14}{31} a^{7} - \frac{12}{31} a^{6} + \frac{11}{31} a^{5} + \frac{1}{31} a^{4} + \frac{7}{31} a^{3} + \frac{1}{31} a^{2} - \frac{14}{31} a + \frac{1}{31}$, $\frac{1}{334047461538252809768690096930513245764057866534690335581153088148227457323725437947754356663889856812200864676395828176804353} a^{15} + \frac{1918758438196215184329787524271720422367151407168402139731251069518108193586880161383601210346208463573777871827941809601015}{334047461538252809768690096930513245764057866534690335581153088148227457323725437947754356663889856812200864676395828176804353} a^{14} + \frac{699733276186947708607685790528861782858062631329336731857700706143601909963756551022088807128122310420633849337972335344859}{47721065934036115681241442418644749394865409504955762225879012592603922474817919706822050951984265258885837810913689739543479} a^{13} + \frac{44933447004961452194177875973425026804935424675686056271714331876402132154105015690125396413072533282533090038795358605544636}{334047461538252809768690096930513245764057866534690335581153088148227457323725437947754356663889856812200864676395828176804353} a^{12} + \frac{12189777019096700112821539809552988309978423207071782252212976763481849948207805508009624737975086095988592433485986261846629}{47721065934036115681241442418644749394865409504955762225879012592603922474817919706822050951984265258885837810913689739543479} a^{11} - \frac{39631444240266043082971517364907040271448793418081750263101506350194907411980363532652132403026163832923643992914928148416332}{334047461538252809768690096930513245764057866534690335581153088148227457323725437947754356663889856812200864676395828176804353} a^{10} + \frac{4169011171916221786264816477720519586289740449194599571523929981055500290816929578494962907985165358034332028928982462667156}{334047461538252809768690096930513245764057866534690335581153088148227457323725437947754356663889856812200864676395828176804353} a^{9} - \frac{69590844845671528520483857157185998537009511078783869965995485582157301327717359986449943113833679003592073843189131044403568}{334047461538252809768690096930513245764057866534690335581153088148227457323725437947754356663889856812200864676395828176804353} a^{8} - \frac{8289648306620256950768303023234903696098013459190655918937475647751023993186729094894308772959952370380834155552297723014229}{19649850678720753515805299819441955633179874502040607975361946361660438666101496349867903333169991577188286157435048716282609} a^{7} - \frac{53521362663231611488383524958376193011369337053873803027840464169069902386569495404027343346162248971526198019119846320461009}{334047461538252809768690096930513245764057866534690335581153088148227457323725437947754356663889856812200864676395828176804353} a^{6} + \frac{21396664222042567162317280017312869792944893965473918153744219338025372945867890925717045603868786529296879258315242544912596}{47721065934036115681241442418644749394865409504955762225879012592603922474817919706822050951984265258885837810913689739543479} a^{5} - \frac{25529412232691054837980726661238138760366129673849481999939710840067874784321695372882207082704060817657765685925631733378808}{334047461538252809768690096930513245764057866534690335581153088148227457323725437947754356663889856812200864676395828176804353} a^{4} - \frac{92972894256360270243212519507394386986137669280609768835989777666336569759729328268782872592055686525192430232833719461212448}{334047461538252809768690096930513245764057866534690335581153088148227457323725437947754356663889856812200864676395828176804353} a^{3} - \frac{99270196819521977143776493060835093270731954135442459354311279584688586708584941993690221799858408603838995609283813155283237}{334047461538252809768690096930513245764057866534690335581153088148227457323725437947754356663889856812200864676395828176804353} a^{2} - \frac{25308523584188174745943512334174184367546355882957136890092071854162867977058240528927357747505160069208966194692801530517989}{334047461538252809768690096930513245764057866534690335581153088148227457323725437947754356663889856812200864676395828176804353} a + \frac{82194172805141790760940330307538983891467658382003017081640006174444096539226723100902732290061297715162807150008380683290510}{334047461538252809768690096930513245764057866534690335581153088148227457323725437947754356663889856812200864676395828176804353}$
Class group and class number
$C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{6}\times C_{106594380}$, which has order $81864483840$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 20726.065235 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$(C_2^2\times C_4).C_2^4$ (as 16T471):
| A solvable group of order 256 |
| The 46 conjugacy class representatives for $(C_2^2\times C_4).C_2^4$ |
| Character table for $(C_2^2\times C_4).C_2^4$ is not computed |
Intermediate fields
| \(\Q(\sqrt{2}) \), 4.4.14336.1, \(\Q(\zeta_{16})^+\), 4.4.7168.1, 8.8.3288334336.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $7$ | 7.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 7.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 7.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 7.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 7.8.6.2 | $x^{8} - 49 x^{4} + 3969$ | $4$ | $2$ | $6$ | $D_4$ | $[\ ]_{4}^{2}$ | |
| 193 | Data not computed | ||||||
| 223 | Data not computed | ||||||