Normalized defining polynomial
\( x^{16} - 6 x^{15} + 68 x^{14} - 444 x^{13} + 1922 x^{12} - 9518 x^{11} + 46905 x^{10} + 40593 x^{9} + 619392 x^{8} + 556314 x^{7} + 7635373 x^{6} + 13465847 x^{5} + 31633951 x^{4} + 112760966 x^{3} + 149722596 x^{2} + 125046840 x + 534849200 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(2970275152580737243393920061992241=23^{8}\cdot 41^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $123.61$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $23, 41$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{9} - \frac{1}{2} a^{7} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{460} a^{12} + \frac{5}{23} a^{11} + \frac{111}{460} a^{10} + \frac{27}{230} a^{9} + \frac{179}{460} a^{8} - \frac{1}{2} a^{7} + \frac{1}{46} a^{6} - \frac{189}{460} a^{5} - \frac{53}{115} a^{4} + \frac{11}{92} a^{3} + \frac{99}{460} a^{2} + \frac{71}{230} a - \frac{1}{23}$, $\frac{1}{2300} a^{13} + \frac{1}{2300} a^{11} - \frac{233}{1150} a^{10} - \frac{37}{100} a^{9} + \frac{27}{230} a^{8} - \frac{11}{115} a^{7} - \frac{729}{2300} a^{6} - \frac{273}{575} a^{5} - \frac{27}{460} a^{4} + \frac{1039}{2300} a^{3} + \frac{148}{575} a^{2} - \frac{111}{230} a - \frac{3}{23}$, $\frac{1}{1761137485000} a^{14} + \frac{48224519}{1761137485000} a^{13} + \frac{1085457781}{1761137485000} a^{12} - \frac{130490440197}{1761137485000} a^{11} + \frac{3352638683}{14089099880} a^{10} - \frac{758829522829}{1761137485000} a^{9} + \frac{74722575873}{176113748500} a^{8} - \frac{262610039159}{1761137485000} a^{7} + \frac{530791737657}{1761137485000} a^{6} + \frac{123988199397}{1761137485000} a^{5} - \frac{19089687392}{220142185625} a^{4} - \frac{518349878467}{1761137485000} a^{3} - \frac{88200901273}{440284371250} a^{2} + \frac{15161635491}{88056874250} a + \frac{228299208}{8805687425}$, $\frac{1}{2048258501076903309051407991927944694781995845000} a^{15} + \frac{54857974913787688872078296341763976}{256032312634612913631425998990993086847749480625} a^{14} - \frac{57105924495983245755179317182524625799823507}{512064625269225827262851997981986173695498961250} a^{13} + \frac{526137480571452670230244086953573823316379131}{1024129250538451654525703995963972347390997922500} a^{12} + \frac{127434865431868178905469621425720129977007686821}{1024129250538451654525703995963972347390997922500} a^{11} - \frac{113045892302038464956322953605093378154420327851}{512064625269225827262851997981986173695498961250} a^{10} - \frac{11337989024064947361116351855258667692548167937}{89054717438126230828322086605562812816608515000} a^{9} - \frac{960933700704425818727601703889952199801700759939}{2048258501076903309051407991927944694781995845000} a^{8} - \frac{6608081727857382044229363318450860249257284781}{27679168933471666338532540431458712091648592500} a^{7} - \frac{67624306540975811154011564677803502302812639303}{204825850107690330905140799192794469478199584500} a^{6} + \frac{1014324393671308098262894507151900595699422974447}{2048258501076903309051407991927944694781995845000} a^{5} - \frac{8344634925914078120702294367178957311015972183}{55358337866943332677065080862917424183297185000} a^{4} - \frac{9251556311448859763800980281004428310461082201}{409651700215380661810281598385588938956399169000} a^{3} - \frac{113230675421362699237867815941349280234121956059}{1024129250538451654525703995963972347390997922500} a^{2} - \frac{3015061609554054705839685867067997506762288423}{51206462526922582726285199798198617369549896125} a + \frac{33589104572023392280244238214229905381364752}{330364274367242469201839998698055595932579975}$
Class group and class number
$C_{2}\times C_{4}\times C_{48}$, which has order $384$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 31804349.3331 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^3.C_4$ (as 16T36):
| A solvable group of order 32 |
| The 11 conjugacy class representatives for $C_2^3.C_4$ |
| Character table for $C_2^3.C_4$ |
Intermediate fields
| \(\Q(\sqrt{41}) \), \(\Q(\sqrt{-23}) \), \(\Q(\sqrt{-943}) \), 4.0.36459209.2, 4.4.68921.1, \(\Q(\sqrt{-23}, \sqrt{41})\), 8.0.54500230757132921.4 x2, 8.4.103025010883049.2 x2, 8.0.1329273920905681.3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 8 siblings: | data not computed |
| Degree 16 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/5.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{8}$ | R | ${\href{/LocalNumberField/43.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $23$ | 23.4.2.1 | $x^{4} + 299 x^{2} + 25921$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 23.4.2.1 | $x^{4} + 299 x^{2} + 25921$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 23.4.2.1 | $x^{4} + 299 x^{2} + 25921$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 23.4.2.1 | $x^{4} + 299 x^{2} + 25921$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $41$ | 41.8.7.3 | $x^{8} - 53136$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ |
| 41.8.7.3 | $x^{8} - 53136$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ |