Normalized defining polynomial
\( x^{16} - 2 x^{15} - 13 x^{14} + 130 x^{13} - 680 x^{12} + 1550 x^{11} + 20405 x^{10} - 92160 x^{9} + 114839 x^{8} + 13382 x^{7} + 1287471 x^{6} - 3112866 x^{5} + 4334218 x^{4} - 2448624 x^{3} + 7869323 x^{2} - 16187548 x + 112126933 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(2970275152580737243393920061992241=23^{8}\cdot 41^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $123.61$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $23, 41$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{10} a^{9} + \frac{1}{10} a^{8} - \frac{1}{2} a^{6} + \frac{3}{10} a^{5} + \frac{3}{10} a^{4} + \frac{1}{5} a^{3} - \frac{3}{10} a^{2} + \frac{3}{10} a - \frac{1}{5}$, $\frac{1}{10} a^{10} - \frac{1}{10} a^{8} - \frac{1}{2} a^{7} - \frac{1}{5} a^{6} - \frac{1}{10} a^{4} - \frac{1}{2} a^{3} - \frac{2}{5} a^{2} - \frac{1}{2} a + \frac{1}{5}$, $\frac{1}{10} a^{11} + \frac{1}{10} a^{8} + \frac{3}{10} a^{7} - \frac{1}{2} a^{6} - \frac{3}{10} a^{5} + \frac{3}{10} a^{4} + \frac{3}{10} a^{3} + \frac{1}{5} a^{2} + \frac{3}{10}$, $\frac{1}{10} a^{12} + \frac{1}{5} a^{8} - \frac{1}{2} a^{7} + \frac{1}{5} a^{6} + \frac{3}{10} a^{2} + \frac{1}{5}$, $\frac{1}{50} a^{13} + \frac{1}{50} a^{12} - \frac{1}{50} a^{11} - \frac{1}{50} a^{10} + \frac{1}{50} a^{9} - \frac{9}{50} a^{8} - \frac{8}{25} a^{7} - \frac{8}{25} a^{6} - \frac{1}{2} a^{5} + \frac{1}{5} a^{4} + \frac{4}{25} a^{3} - \frac{1}{25} a^{2} - \frac{11}{50} a + \frac{2}{25}$, $\frac{1}{1550} a^{14} + \frac{1}{310} a^{13} + \frac{14}{775} a^{12} + \frac{3}{310} a^{11} + \frac{27}{1550} a^{10} + \frac{293}{1550} a^{8} - \frac{79}{310} a^{7} - \frac{2}{25} a^{6} + \frac{113}{310} a^{5} + \frac{493}{1550} a^{4} - \frac{12}{31} a^{3} + \frac{261}{1550} a^{2} + \frac{21}{62} a + \frac{313}{775}$, $\frac{1}{5629464769422089430512071749573548630320629211876250} a^{15} - \frac{204335191309796140874942484780351260063893127492}{2814732384711044715256035874786774315160314605938125} a^{14} - \frac{172372363112316853595811220909867930513568038957}{22517859077688357722048286998294194521282516847505} a^{13} - \frac{42128399293615158079036685021392941687406519649739}{1125892953884417886102414349914709726064125842375250} a^{12} + \frac{14564918972957692254374968245827979236386630683907}{1125892953884417886102414349914709726064125842375250} a^{11} - \frac{4959159452146157655952150914263281575172248648962}{562946476942208943051207174957354863032062921187625} a^{10} + \frac{700205209359761708660369456878194141909045006917}{30429539294173456381146333781478641244976374118250} a^{9} - \frac{4199478795907450890992396090321756374459975739739}{45035718155376715444096573996588389042565033695010} a^{8} - \frac{2461917660221354044101236047826870795239907389046311}{5629464769422089430512071749573548630320629211876250} a^{7} - \frac{826661443002952441140300779341136903377305846054508}{2814732384711044715256035874786774315160314605938125} a^{6} - \frac{982315739230297871917029800705150913469815820459517}{5629464769422089430512071749573548630320629211876250} a^{5} + \frac{574624802220336650153265235375661131863598749195703}{5629464769422089430512071749573548630320629211876250} a^{4} - \frac{503021907890054629455322217546357045035394290930414}{2814732384711044715256035874786774315160314605938125} a^{3} + \frac{1347010048362521518902109717047768663916279109508061}{2814732384711044715256035874786774315160314605938125} a^{2} - \frac{573332671875591286085752696921987078768931586664553}{2814732384711044715256035874786774315160314605938125} a - \frac{1270785439445522438848481560402286008956515982257131}{5629464769422089430512071749573548630320629211876250}$
Class group and class number
$C_{2}\times C_{4}\times C_{24}$, which has order $192$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 117891575.806 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^3.C_4$ (as 16T41):
| A solvable group of order 32 |
| The 11 conjugacy class representatives for $C_2^3.C_4$ |
| Character table for $C_2^3.C_4$ |
Intermediate fields
| \(\Q(\sqrt{41}) \), 4.0.36459209.2, 4.2.38663.1, 4.2.1585183.1, 8.0.54500230757132921.4 x2, 8.0.1329273920905681.4 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 8 siblings: | data not computed |
| Degree 16 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/5.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{8}$ | R | ${\href{/LocalNumberField/43.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $23$ | 23.4.2.1 | $x^{4} + 299 x^{2} + 25921$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 23.4.2.1 | $x^{4} + 299 x^{2} + 25921$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 23.4.2.1 | $x^{4} + 299 x^{2} + 25921$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 23.4.2.1 | $x^{4} + 299 x^{2} + 25921$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $41$ | 41.8.7.3 | $x^{8} - 53136$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ |
| 41.8.7.3 | $x^{8} - 53136$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ |