Normalized defining polynomial
\( x^{16} - 2 x^{15} + 12 x^{14} - 6 x^{13} + 253 x^{12} - 190 x^{11} + 10940 x^{10} - 42783 x^{9} + 111126 x^{8} + 250756 x^{7} + 592081 x^{6} - 7639120 x^{5} + 36803076 x^{4} - 51785747 x^{3} + 32623454 x^{2} + 119692325 x + 51165007 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(2970275152580737243393920061992241=23^{8}\cdot 41^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $123.61$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $23, 41$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{31} a^{8} + \frac{14}{31} a^{7} + \frac{1}{31} a^{6} + \frac{8}{31} a^{5} + \frac{5}{31} a^{4} + \frac{8}{31} a^{3} + \frac{12}{31} a^{2} - \frac{15}{31} a + \frac{12}{31}$, $\frac{1}{31} a^{9} - \frac{9}{31} a^{7} - \frac{6}{31} a^{6} - \frac{14}{31} a^{5} - \frac{7}{31} a^{3} + \frac{3}{31} a^{2} + \frac{5}{31} a - \frac{13}{31}$, $\frac{1}{31} a^{10} - \frac{4}{31} a^{7} - \frac{5}{31} a^{6} + \frac{10}{31} a^{5} + \frac{7}{31} a^{4} + \frac{13}{31} a^{3} - \frac{11}{31} a^{2} + \frac{7}{31} a + \frac{15}{31}$, $\frac{1}{31} a^{11} - \frac{11}{31} a^{7} + \frac{14}{31} a^{6} + \frac{8}{31} a^{5} + \frac{2}{31} a^{4} - \frac{10}{31} a^{3} - \frac{7}{31} a^{2} - \frac{14}{31} a - \frac{14}{31}$, $\frac{1}{1426} a^{12} + \frac{3}{713} a^{11} - \frac{10}{713} a^{10} + \frac{1}{1426} a^{9} + \frac{2}{713} a^{8} + \frac{68}{713} a^{7} + \frac{635}{1426} a^{6} - \frac{84}{713} a^{5} + \frac{139}{713} a^{4} - \frac{245}{1426} a^{3} + \frac{3}{713} a^{2} + \frac{236}{713} a + \frac{3}{46}$, $\frac{1}{1426} a^{13} - \frac{5}{713} a^{11} - \frac{17}{1426} a^{10} - \frac{1}{713} a^{9} + \frac{10}{713} a^{8} + \frac{3}{1426} a^{7} + \frac{58}{713} a^{6} - \frac{231}{713} a^{5} - \frac{395}{1426} a^{4} - \frac{44}{713} a^{3} + \frac{264}{713} a^{2} - \frac{117}{1426} a - \frac{49}{713}$, $\frac{1}{84134} a^{14} - \frac{3}{84134} a^{13} + \frac{9}{84134} a^{12} + \frac{357}{84134} a^{11} + \frac{727}{84134} a^{10} - \frac{1289}{84134} a^{9} + \frac{433}{84134} a^{8} + \frac{1651}{3658} a^{7} + \frac{13325}{84134} a^{6} - \frac{29111}{84134} a^{5} - \frac{33595}{84134} a^{4} + \frac{21667}{84134} a^{3} + \frac{575}{3658} a^{2} - \frac{535}{2714} a + \frac{8501}{84134}$, $\frac{1}{7941737229841455039167875020511280178638} a^{15} - \frac{108593132116556081936734057265572}{128092535965184758696256048717923873849} a^{14} + \frac{1133116951806274783779877022648669115}{7941737229841455039167875020511280178638} a^{13} + \frac{767844669446950769745459185438913101}{3970868614920727519583937510255640089319} a^{12} + \frac{50672352808336327190953438730493206414}{3970868614920727519583937510255640089319} a^{11} - \frac{36163647161289509583737122490096538389}{7941737229841455039167875020511280178638} a^{10} - \frac{45315745623612406796433474381280952571}{3970868614920727519583937510255640089319} a^{9} - \frac{21320877389967090082364112344243472803}{3970868614920727519583937510255640089319} a^{8} - \frac{3888339054319180654601378427423841443717}{7941737229841455039167875020511280178638} a^{7} + \frac{399864431228404734016685117392544909945}{3970868614920727519583937510255640089319} a^{6} + \frac{1081147247416584698763943990866090350548}{3970868614920727519583937510255640089319} a^{5} + \frac{2973094095987058762885631228759533113905}{7941737229841455039167875020511280178638} a^{4} + \frac{742655784062696105774959444107439782115}{3970868614920727519583937510255640089319} a^{3} + \frac{1211502986622624590140134701048306182022}{3970868614920727519583937510255640089319} a^{2} - \frac{2666891304393394226114097146607054171185}{7941737229841455039167875020511280178638} a - \frac{32922477595249036953937198945077439003}{345292923036585001702951087848316529506}$
Class group and class number
$C_{2}\times C_{4}\times C_{48}$, which has order $384$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 46045060.8105 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 16 |
| The 10 conjugacy class representatives for $C_8: C_2$ |
| Character table for $C_8: C_2$ |
Intermediate fields
| \(\Q(\sqrt{-943}) \), \(\Q(\sqrt{41}) \), \(\Q(\sqrt{-23}) \), \(\Q(\sqrt{-23}, \sqrt{41})\), 4.4.68921.1, 4.0.36459209.2, 8.0.1329273920905681.3, 8.4.103025010883049.3 x2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 8 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.1.0.1}{1} }^{16}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{8}$ | R | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.1.0.1}{1} }^{16}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $23$ | 23.4.2.1 | $x^{4} + 299 x^{2} + 25921$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 23.4.2.1 | $x^{4} + 299 x^{2} + 25921$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 23.4.2.1 | $x^{4} + 299 x^{2} + 25921$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 23.4.2.1 | $x^{4} + 299 x^{2} + 25921$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $41$ | 41.8.7.3 | $x^{8} - 53136$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ |
| 41.8.7.3 | $x^{8} - 53136$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ |