Normalized defining polynomial
\( x^{16} - 8 x^{14} - 8 x^{13} - 28 x^{12} - 112 x^{11} - 386 x^{10} - 1084 x^{9} + 1550 x^{8} + 18704 x^{7} + 52532 x^{6} + 83536 x^{5} + 98107 x^{4} + 93808 x^{3} + 65772 x^{2} + 31856 x + 16631 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(2963025166336000000000000=2^{32}\cdot 5^{12}\cdot 41^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $33.84$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 41$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{123} a^{12} + \frac{34}{123} a^{10} + \frac{11}{41} a^{9} + \frac{19}{41} a^{8} - \frac{38}{123} a^{7} + \frac{11}{123} a^{6} - \frac{13}{123} a^{5} + \frac{40}{123} a^{4} + \frac{25}{123} a^{3} + \frac{38}{123} a^{2} - \frac{4}{123} a + \frac{22}{123}$, $\frac{1}{123} a^{13} + \frac{34}{123} a^{11} + \frac{11}{41} a^{10} + \frac{19}{41} a^{9} - \frac{38}{123} a^{8} + \frac{11}{123} a^{7} - \frac{13}{123} a^{6} + \frac{40}{123} a^{5} + \frac{25}{123} a^{4} + \frac{38}{123} a^{3} - \frac{4}{123} a^{2} + \frac{22}{123} a$, $\frac{1}{123} a^{14} + \frac{11}{41} a^{11} + \frac{8}{123} a^{10} - \frac{53}{123} a^{9} + \frac{1}{3} a^{8} + \frac{49}{123} a^{7} + \frac{35}{123} a^{6} - \frac{25}{123} a^{5} + \frac{31}{123} a^{4} + \frac{7}{123} a^{3} - \frac{40}{123} a^{2} + \frac{13}{123} a - \frac{10}{123}$, $\frac{1}{912758477173294801933169463} a^{15} - \frac{769201361712040184587552}{912758477173294801933169463} a^{14} + \frac{2287362104860669300155341}{912758477173294801933169463} a^{13} + \frac{903849307325027890696880}{304252825724431600644389821} a^{12} - \frac{32788507119009738574607495}{912758477173294801933169463} a^{11} + \frac{135945302979289344957925460}{912758477173294801933169463} a^{10} + \frac{431123765978277360095793820}{912758477173294801933169463} a^{9} - \frac{386620780970456315411969282}{912758477173294801933169463} a^{8} + \frac{7211592667393855443490394}{912758477173294801933169463} a^{7} - \frac{271128580232532422058239813}{912758477173294801933169463} a^{6} - \frac{17100795646936523952202490}{912758477173294801933169463} a^{5} + \frac{164133683361159345810324791}{912758477173294801933169463} a^{4} - \frac{179352935306854740864439297}{912758477173294801933169463} a^{3} - \frac{109960629268729794030636602}{304252825724431600644389821} a^{2} + \frac{146768851757895352526023877}{304252825724431600644389821} a - \frac{386033870200839186062760980}{912758477173294801933169463}$
Class group and class number
$C_{2}\times C_{2}$, which has order $4$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{1286423910348914768}{10023593823626962167483} a^{15} - \frac{35982004385547982012}{410967346768705448866803} a^{14} - \frac{261460798519772989768}{410967346768705448866803} a^{13} - \frac{699711161081372238935}{410967346768705448866803} a^{12} - \frac{1288020558341941078208}{410967346768705448866803} a^{11} - \frac{1239936230633520901418}{136989115589568482955601} a^{10} - \frac{22461280681777121487572}{410967346768705448866803} a^{9} - \frac{43702124827024469551604}{410967346768705448866803} a^{8} + \frac{29039609862002659231616}{136989115589568482955601} a^{7} + \frac{299943979861817588921054}{136989115589568482955601} a^{6} + \frac{882235347488938583856948}{136989115589568482955601} a^{5} + \frac{1300899965864286072984731}{136989115589568482955601} a^{4} + \frac{1073993277913030054243664}{136989115589568482955601} a^{3} + \frac{1959059258278034183308802}{410967346768705448866803} a^{2} + \frac{1006124036920034992830740}{410967346768705448866803} a - \frac{223392575641758201585922}{410967346768705448866803} \) (order $10$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 438332.744264 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^4.C_2^3$ (as 16T268):
| A solvable group of order 128 |
| The 29 conjugacy class representatives for $C_2^4.C_2^3$ |
| Character table for $C_2^4.C_2^3$ is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), \(\Q(\sqrt{2}) \), \(\Q(\sqrt{10}) \), \(\Q(\zeta_{5})\), 4.0.8000.2, \(\Q(\sqrt{2}, \sqrt{5})\), 8.0.64000000.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $5$ | 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |
| 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| 41 | Data not computed | ||||||