Normalized defining polynomial
\( x^{16} - 8 x^{15} + 24 x^{14} - 28 x^{13} - 30 x^{12} + 180 x^{11} - 426 x^{10} + 766 x^{9} - 623 x^{8} - 696 x^{7} + 2946 x^{6} - 4546 x^{5} + 6157 x^{4} - 6406 x^{3} + 3509 x^{2} - 820 x + 1787 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(296009266610568616126240129=17^{10}\cdot 59^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $45.13$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $17, 59$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{6} a^{11} - \frac{1}{6} a^{10} - \frac{1}{6} a^{9} + \frac{1}{6} a^{7} + \frac{1}{6} a^{6} + \frac{1}{3} a^{5} - \frac{1}{2} a^{3} - \frac{1}{6} a + \frac{1}{3}$, $\frac{1}{6} a^{12} + \frac{1}{6} a^{10} - \frac{1}{6} a^{9} + \frac{1}{6} a^{8} + \frac{1}{3} a^{7} + \frac{1}{3} a^{5} + \frac{1}{3} a^{2} + \frac{1}{6} a + \frac{1}{3}$, $\frac{1}{270} a^{13} + \frac{8}{135} a^{12} + \frac{7}{135} a^{11} + \frac{17}{270} a^{10} - \frac{11}{54} a^{9} - \frac{11}{45} a^{8} + \frac{37}{90} a^{7} - \frac{16}{45} a^{6} + \frac{91}{270} a^{5} - \frac{7}{18} a^{4} + \frac{89}{270} a^{3} - \frac{1}{10} a^{2} + \frac{19}{135} a - \frac{52}{135}$, $\frac{1}{2019875130} a^{14} - \frac{1}{288553590} a^{13} - \frac{14256103}{673291710} a^{12} - \frac{8003591}{201987513} a^{11} + \frac{26384653}{155375010} a^{10} - \frac{27510181}{2019875130} a^{9} - \frac{7189813}{74810190} a^{8} - \frac{102020924}{336645855} a^{7} + \frac{796630099}{2019875130} a^{6} - \frac{397758889}{1009937565} a^{5} + \frac{33104872}{1009937565} a^{4} - \frac{65155277}{1009937565} a^{3} - \frac{134617843}{288553590} a^{2} - \frac{21450491}{673291710} a - \frac{15606173}{2019875130}$, $\frac{1}{159570135270} a^{15} + \frac{16}{79785067635} a^{14} + \frac{53072977}{53190045090} a^{13} + \frac{5286619166}{79785067635} a^{12} + \frac{262760287}{12274625790} a^{11} - \frac{8945613227}{79785067635} a^{10} - \frac{827741062}{5319004509} a^{9} + \frac{5335419409}{26595022545} a^{8} + \frac{30643592573}{79785067635} a^{7} - \frac{7249632973}{31914027054} a^{6} - \frac{11672391239}{31914027054} a^{5} - \frac{7296403069}{22795733610} a^{4} + \frac{2811145319}{15957013527} a^{3} + \frac{650190687}{1970001670} a^{2} + \frac{69449570179}{159570135270} a + \frac{1482899479}{4091541930}$
Class group and class number
$C_{3}$, which has order $3$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1476026.95846 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_4\wr C_2$ (as 16T42):
| A solvable group of order 32 |
| The 14 conjugacy class representatives for $C_4\wr C_2$ |
| Character table for $C_4\wr C_2$ |
Intermediate fields
| \(\Q(\sqrt{-59}) \), \(\Q(\sqrt{17}) \), \(\Q(\sqrt{-1003}) \), 4.0.59177.1 x2, 4.2.17051.1 x2, \(\Q(\sqrt{17}, \sqrt{-59})\), 8.0.59532594593.1, 8.0.17204919837377.1, 8.0.1012054108081.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 8 siblings: | data not computed |
| Degree 16 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/3.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{8}$ | R | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | R |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $17$ | 17.8.4.1 | $x^{8} + 6358 x^{4} - 4913 x^{2} + 10106041$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 17.8.6.2 | $x^{8} + 85 x^{4} + 2601$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| $59$ | 59.8.4.1 | $x^{8} + 97468 x^{4} - 205379 x^{2} + 2375002756$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 59.8.4.1 | $x^{8} + 97468 x^{4} - 205379 x^{2} + 2375002756$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |