Normalized defining polynomial
\( x^{16} + 12 x^{14} - 24 x^{13} + 84 x^{12} - 152 x^{11} + 308 x^{10} - 344 x^{9} + 386 x^{8} - 216 x^{7} + 232 x^{6} + 40 x^{5} + 24 x^{4} + 32 x^{3} + 168 x^{2} + 112 x + 34 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(29548117155177824256=2^{52}\cdot 3^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $16.48$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{323170275062549395633} a^{15} - \frac{71548258336619893971}{323170275062549395633} a^{14} - \frac{71675527049003191289}{323170275062549395633} a^{13} - \frac{110177084914883370707}{323170275062549395633} a^{12} + \frac{96745760782700945790}{323170275062549395633} a^{11} - \frac{118827697108891590142}{323170275062549395633} a^{10} + \frac{120557781887279585933}{323170275062549395633} a^{9} + \frac{20952036489840373596}{323170275062549395633} a^{8} + \frac{108130872564268776745}{323170275062549395633} a^{7} - \frac{9404387513894359129}{19010016180149964449} a^{6} + \frac{41176294121792763339}{323170275062549395633} a^{5} + \frac{30137711837688941591}{323170275062549395633} a^{4} - \frac{13092710215073275636}{323170275062549395633} a^{3} + \frac{69336171337597643904}{323170275062549395633} a^{2} + \frac{145600609683554433807}{323170275062549395633} a + \frac{7181061747310054431}{19010016180149964449}$
Class group and class number
$C_{2}$, which has order $2$
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{15928045468531106}{560087131824175729} a^{15} + \frac{4531148122189282}{560087131824175729} a^{14} + \frac{187147024370474498}{560087131824175729} a^{13} - \frac{319332162314409247}{560087131824175729} a^{12} + \frac{1180664922544109016}{560087131824175729} a^{11} - \frac{1847103759096823147}{560087131824175729} a^{10} + \frac{3659473510665487888}{560087131824175729} a^{9} - \frac{2811544734275069385}{560087131824175729} a^{8} + \frac{2017616026463779182}{560087131824175729} a^{7} + \frac{124276870909111328}{32946301872010337} a^{6} - \frac{1769064121228298574}{560087131824175729} a^{5} + \frac{5364167736391768695}{560087131824175729} a^{4} - \frac{2467956549639797004}{560087131824175729} a^{3} + \frac{1885656905433907158}{560087131824175729} a^{2} + \frac{2532501746555408516}{560087131824175729} a + \frac{99165483487280513}{32946301872010337} \) (order $8$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 4666.08220865 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$(C_2^2\times C_4):C_2$ (as 16T54):
| A solvable group of order 32 |
| The 14 conjugacy class representatives for $(C_2^2\times C_4):C_2$ |
| Character table for $(C_2^2\times C_4):C_2$ |
Intermediate fields
| \(\Q(\sqrt{-1}) \), \(\Q(\sqrt{2}) \), \(\Q(\sqrt{-2}) \), 4.0.18432.1 x2, \(\Q(\zeta_{8})\), 4.2.18432.3 x2, 8.0.1358954496.9, 8.0.150994944.1, 8.0.9437184.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 16 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $3$ | 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |