Normalized defining polynomial
\( x^{16} - 4 x^{15} - 12 x^{14} + 56 x^{13} + 48 x^{12} - 332 x^{11} + 36 x^{10} + 1048 x^{9} - 246 x^{8} - 364 x^{7} - 2772 x^{6} - 18808 x^{5} - 6776 x^{4} + 60252 x^{3} + 95484 x^{2} + 59688 x + 16749 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(29476538281722504019968=2^{24}\cdot 3^{8}\cdot 193^{5}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $25.37$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 193$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4} - \frac{1}{2}$, $\frac{1}{2} a^{5} - \frac{1}{2} a$, $\frac{1}{4} a^{6} - \frac{1}{4} a^{4} + \frac{1}{4} a^{2} - \frac{1}{4}$, $\frac{1}{4} a^{7} - \frac{1}{4} a^{5} + \frac{1}{4} a^{3} - \frac{1}{4} a$, $\frac{1}{8} a^{8} - \frac{1}{4} a^{4} - \frac{3}{8}$, $\frac{1}{8} a^{9} - \frac{1}{4} a^{5} - \frac{3}{8} a$, $\frac{1}{16} a^{10} - \frac{1}{16} a^{8} - \frac{1}{8} a^{6} - \frac{1}{4} a^{5} + \frac{1}{8} a^{4} - \frac{1}{2} a^{3} - \frac{3}{16} a^{2} + \frac{1}{4} a + \frac{3}{16}$, $\frac{1}{16} a^{11} - \frac{1}{16} a^{9} - \frac{1}{8} a^{7} + \frac{1}{8} a^{5} - \frac{1}{4} a^{4} - \frac{3}{16} a^{3} - \frac{1}{2} a^{2} + \frac{3}{16} a + \frac{1}{4}$, $\frac{1}{480} a^{12} + \frac{1}{120} a^{11} - \frac{1}{60} a^{10} + \frac{1}{20} a^{9} - \frac{1}{480} a^{8} + \frac{1}{15} a^{7} - \frac{1}{30} a^{6} + \frac{1}{5} a^{5} + \frac{19}{480} a^{4} + \frac{31}{120} a^{3} - \frac{19}{60} a^{2} - \frac{9}{20} a + \frac{23}{160}$, $\frac{1}{1440} a^{13} + \frac{1}{1440} a^{12} - \frac{1}{72} a^{11} - \frac{1}{120} a^{10} - \frac{73}{1440} a^{9} - \frac{5}{288} a^{8} + \frac{1}{180} a^{7} + \frac{1}{10} a^{6} + \frac{331}{1440} a^{5} + \frac{307}{1440} a^{4} - \frac{101}{360} a^{3} + \frac{5}{24} a^{2} + \frac{119}{480} a - \frac{43}{160}$, $\frac{1}{1440} a^{14} + \frac{1}{720} a^{11} + \frac{41}{1440} a^{10} - \frac{13}{240} a^{9} - \frac{13}{240} a^{8} - \frac{23}{360} a^{7} + \frac{31}{1440} a^{6} - \frac{29}{120} a^{5} + \frac{19}{120} a^{4} + \frac{169}{720} a^{3} + \frac{25}{96} a^{2} - \frac{17}{48} a + \frac{17}{80}$, $\frac{1}{18119465202875040} a^{15} + \frac{5455166104819}{18119465202875040} a^{14} + \frac{223258445527}{6039821734291680} a^{13} + \frac{1080937165699}{9059732601437520} a^{12} - \frac{362616042489131}{18119465202875040} a^{11} - \frac{72637124060551}{18119465202875040} a^{10} + \frac{259910948327899}{6039821734291680} a^{9} - \frac{518022534584677}{9059732601437520} a^{8} + \frac{723466529584751}{18119465202875040} a^{7} + \frac{136406443331909}{3623893040575008} a^{6} + \frac{403075892657483}{2013273911430560} a^{5} - \frac{1400271427355819}{9059732601437520} a^{4} - \frac{5035753897689157}{18119465202875040} a^{3} - \frac{318380208262115}{1207964346858336} a^{2} + \frac{1514643445131421}{6039821734291680} a - \frac{421753334162411}{1006636955715280}$
Class group and class number
$C_{2}$, which has order $2$
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{1234577793457}{1509955433572920} a^{15} + \frac{3834636220967}{905973260143752} a^{14} + \frac{42984857125717}{9059732601437520} a^{13} - \frac{115373874314141}{2264933150359380} a^{12} + \frac{19098354198593}{905973260143752} a^{11} + \frac{136907836945693}{566233287589845} a^{10} - \frac{2801352225600253}{9059732601437520} a^{9} - \frac{269115237057409}{566233287589845} a^{8} + \frac{652216914605011}{905973260143752} a^{7} - \frac{2520065042445797}{4529866300718760} a^{6} + \frac{26874356939105599}{9059732601437520} a^{5} + \frac{5312166622741877}{452986630071876} a^{4} - \frac{36102036636466553}{4529866300718760} a^{3} - \frac{29583331455702823}{754977716786460} a^{2} - \frac{98139273253264517}{3019910867145840} a - \frac{706724704748523}{62914809732205} \) (order $12$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 176192.924057 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 1024 |
| The 52 conjugacy class representatives for t16n1163 are not computed |
| Character table for t16n1163 is not computed |
Intermediate fields
| \(\Q(\sqrt{-3}) \), \(\Q(\sqrt{-1}) \), \(\Q(\sqrt{3}) \), \(\Q(\zeta_{12})\), 8.0.4002048.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }{,}\,{\href{/LocalNumberField/11.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $3$ | 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 193 | Data not computed | ||||||