Normalized defining polynomial
\( x^{16} - 4 x^{15} + 32 x^{14} - 76 x^{13} + 299 x^{12} - 314 x^{11} + 756 x^{10} + 1102 x^{9} - 1818 x^{8} + 9272 x^{7} - 7330 x^{6} + 12316 x^{5} + 13740 x^{4} - 21790 x^{3} + 71058 x^{2} - 45732 x + 67369 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(29476538281722504019968=2^{24}\cdot 3^{8}\cdot 193^{5}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $25.37$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 193$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{3} a^{10} + \frac{1}{3} a^{9} - \frac{1}{3} a^{6} + \frac{1}{3} a^{3} + \frac{1}{3} a^{2} + \frac{1}{3}$, $\frac{1}{3} a^{11} - \frac{1}{3} a^{9} - \frac{1}{3} a^{7} + \frac{1}{3} a^{6} + \frac{1}{3} a^{4} - \frac{1}{3} a^{2} + \frac{1}{3} a - \frac{1}{3}$, $\frac{1}{3} a^{12} + \frac{1}{3} a^{9} - \frac{1}{3} a^{8} + \frac{1}{3} a^{7} - \frac{1}{3} a^{6} + \frac{1}{3} a^{5} - \frac{1}{3} a^{2} - \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{3} a^{13} + \frac{1}{3} a^{9} + \frac{1}{3} a^{8} - \frac{1}{3} a^{7} - \frac{1}{3} a^{6} + \frac{1}{3} a^{3} + \frac{1}{3} a^{2} + \frac{1}{3} a - \frac{1}{3}$, $\frac{1}{111} a^{14} + \frac{4}{111} a^{13} + \frac{13}{111} a^{12} + \frac{3}{37} a^{11} + \frac{4}{111} a^{10} + \frac{12}{37} a^{9} + \frac{26}{111} a^{8} + \frac{29}{111} a^{7} - \frac{26}{111} a^{6} + \frac{1}{3} a^{5} - \frac{47}{111} a^{4} + \frac{26}{111} a^{3} + \frac{28}{111} a^{2} + \frac{11}{111} a - \frac{9}{37}$, $\frac{1}{80658731321089264789008723} a^{15} - \frac{265271717282622170971595}{80658731321089264789008723} a^{14} + \frac{6451744743914450433665998}{80658731321089264789008723} a^{13} - \frac{3497014028641589082664478}{80658731321089264789008723} a^{12} + \frac{12619038608523927031706761}{80658731321089264789008723} a^{11} + \frac{1798377161295014625756299}{26886243773696421596336241} a^{10} - \frac{1590834814709613366097013}{8962081257898807198778747} a^{9} - \frac{36070285341596290364378624}{80658731321089264789008723} a^{8} - \frac{32547991846493091995492734}{80658731321089264789008723} a^{7} - \frac{1546495147387741267114676}{26886243773696421596336241} a^{6} + \frac{20140182598304383575670337}{80658731321089264789008723} a^{5} + \frac{7041973592528851128214808}{80658731321089264789008723} a^{4} - \frac{39687408512066462911124294}{80658731321089264789008723} a^{3} + \frac{37612504743695013132928969}{80658731321089264789008723} a^{2} - \frac{9190423488855345432583645}{80658731321089264789008723} a - \frac{19530275426988916587688205}{80658731321089264789008723}$
Class group and class number
$C_{2}$, which has order $2$
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{16339542783272876230}{25356407205623786478783} a^{15} - \frac{69445883886377538737}{25356407205623786478783} a^{14} + \frac{481466756566980964732}{25356407205623786478783} a^{13} - \frac{1156285645769685818543}{25356407205623786478783} a^{12} + \frac{3608685837558544280077}{25356407205623786478783} a^{11} - \frac{340533963283089938120}{2817378578402642942087} a^{10} + \frac{862361286324718758253}{8452135735207928826261} a^{9} + \frac{20409911935892280643987}{25356407205623786478783} a^{8} - \frac{40883535222974959928428}{25356407205623786478783} a^{7} + \frac{28475332892491786830971}{8452135735207928826261} a^{6} - \frac{50788310224162145388430}{25356407205623786478783} a^{5} - \frac{18088791634169733856066}{25356407205623786478783} a^{4} + \frac{241811562761300453525623}{25356407205623786478783} a^{3} - \frac{344411313485825857044767}{25356407205623786478783} a^{2} + \frac{457625962924181610450752}{25356407205623786478783} a - \frac{235380645522964534775069}{25356407205623786478783} \) (order $12$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 125207.3212 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 1024 |
| The 52 conjugacy class representatives for t16n1163 are not computed |
| Character table for t16n1163 is not computed |
Intermediate fields
| \(\Q(\sqrt{-3}) \), \(\Q(\sqrt{-1}) \), \(\Q(\sqrt{3}) \), \(\Q(\zeta_{12})\), 8.0.4002048.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $3$ | 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 193 | Data not computed | ||||||