Properties

Label 16.0.294...241.1
Degree $16$
Signature $[0, 8]$
Discriminant $2.946\times 10^{33}$
Root discriminant \(123.55\)
Ramified primes $37,83$
Class number $1$ (GRH)
Class group trivial (GRH)
Galois group $\OD_{16}:C_2$ (as 16T41)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / Pari/GP / SageMath

Normalized defining polynomial

Copy content comment:Define the number field
 
Copy content sage:x = polygen(QQ); K.<a> = NumberField(x^16 - 2*x^15 - 5*x^14 + 78*x^13 - 475*x^12 + 3641*x^11 - 1085*x^10 - 63940*x^9 + 186709*x^8 - 41802*x^7 + 295915*x^6 - 2938105*x^5 + 4953545*x^4 - 102100*x^3 - 303276*x^2 + 7064925*x + 3528539)
 
Copy content gp:K = bnfinit(y^16 - 2*y^15 - 5*y^14 + 78*y^13 - 475*y^12 + 3641*y^11 - 1085*y^10 - 63940*y^9 + 186709*y^8 - 41802*y^7 + 295915*y^6 - 2938105*y^5 + 4953545*y^4 - 102100*y^3 - 303276*y^2 + 7064925*y + 3528539, 1)
 
Copy content magma:R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^16 - 2*x^15 - 5*x^14 + 78*x^13 - 475*x^12 + 3641*x^11 - 1085*x^10 - 63940*x^9 + 186709*x^8 - 41802*x^7 + 295915*x^6 - 2938105*x^5 + 4953545*x^4 - 102100*x^3 - 303276*x^2 + 7064925*x + 3528539);
 
Copy content oscar:Qx, x = polynomial_ring(QQ); K, a = number_field(x^16 - 2*x^15 - 5*x^14 + 78*x^13 - 475*x^12 + 3641*x^11 - 1085*x^10 - 63940*x^9 + 186709*x^8 - 41802*x^7 + 295915*x^6 - 2938105*x^5 + 4953545*x^4 - 102100*x^3 - 303276*x^2 + 7064925*x + 3528539)
 

\( x^{16} - 2 x^{15} - 5 x^{14} + 78 x^{13} - 475 x^{12} + 3641 x^{11} - 1085 x^{10} - 63940 x^{9} + \cdots + 3528539 \) Copy content Toggle raw display

Copy content comment:Defining polynomial
 
Copy content sage:K.defining_polynomial()
 
Copy content gp:K.pol
 
Copy content magma:DefiningPolynomial(K);
 
Copy content oscar:defining_polynomial(K)
 

Invariants

Degree:  $16$
Copy content comment:Degree over Q
 
Copy content sage:K.degree()
 
Copy content gp:poldegree(K.pol)
 
Copy content magma:Degree(K);
 
Copy content oscar:degree(K)
 
Signature:  $[0, 8]$
Copy content comment:Signature
 
Copy content sage:K.signature()
 
Copy content gp:K.sign
 
Copy content magma:Signature(K);
 
Copy content oscar:signature(K)
 
Discriminant:   \(2946406684936922037860575506582241\) \(\medspace = 37^{14}\cdot 83^{6}\) Copy content Toggle raw display
Copy content comment:Discriminant
 
Copy content sage:K.disc()
 
Copy content gp:K.disc
 
Copy content magma:OK := Integers(K); Discriminant(OK);
 
Copy content oscar:OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(123.55\)
Copy content comment:Root discriminant
 
Copy content sage:(K.disc().abs())^(1./K.degree())
 
Copy content gp:abs(K.disc)^(1/poldegree(K.pol))
 
Copy content magma:Abs(Discriminant(OK))^(1/Degree(K));
 
Copy content oscar:OK = ring_of_integers(K); (1.0 * abs(discriminant(OK)))^(1/degree(K))
 
Galois root discriminant:  $37^{7/8}83^{1/2}\approx 214.642419295045$
Ramified primes:   \(37\), \(83\) Copy content Toggle raw display
Copy content comment:Ramified primes
 
Copy content sage:K.disc().support()
 
Copy content gp:factor(abs(K.disc))[,1]~
 
Copy content magma:PrimeDivisors(Discriminant(OK));
 
Copy content oscar:prime_divisors(discriminant(OK))
 
Discriminant root field:  \(\Q\)
$\Aut(K/\Q)$:   $C_2^2$
Copy content comment:Autmorphisms
 
Copy content sage:K.automorphisms()
 
Copy content magma:Automorphisms(K);
 
Copy content oscar:automorphisms(K)
 
This field is not Galois over $\Q$.
This is not a CM field.
Maximal CM subfield:  4.0.50653.1

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{7}a^{6}-\frac{3}{7}a^{5}+\frac{2}{7}a^{4}+\frac{1}{7}a^{3}-\frac{3}{7}a^{2}+\frac{2}{7}a$, $\frac{1}{7}a^{7}-\frac{1}{7}a$, $\frac{1}{7}a^{8}-\frac{1}{7}a^{2}$, $\frac{1}{7}a^{9}-\frac{1}{7}a^{3}$, $\frac{1}{7}a^{10}-\frac{1}{7}a^{4}$, $\frac{1}{49}a^{11}-\frac{1}{49}a^{10}+\frac{1}{49}a^{9}+\frac{2}{49}a^{8}+\frac{2}{49}a^{7}+\frac{1}{49}a^{6}+\frac{17}{49}a^{5}-\frac{18}{49}a^{4}+\frac{16}{49}a^{2}-\frac{3}{7}a$, $\frac{1}{49}a^{12}+\frac{3}{49}a^{9}-\frac{3}{49}a^{8}+\frac{3}{49}a^{7}-\frac{3}{49}a^{6}+\frac{13}{49}a^{5}-\frac{11}{49}a^{4}-\frac{5}{49}a^{3}+\frac{16}{49}a^{2}-\frac{2}{7}a$, $\frac{1}{49}a^{13}+\frac{3}{49}a^{10}-\frac{3}{49}a^{9}+\frac{3}{49}a^{8}-\frac{3}{49}a^{7}-\frac{1}{49}a^{6}-\frac{18}{49}a^{5}+\frac{16}{49}a^{4}+\frac{2}{49}a^{3}-\frac{3}{7}a^{2}+\frac{3}{7}a$, $\frac{1}{343}a^{14}+\frac{2}{343}a^{13}-\frac{1}{343}a^{12}+\frac{3}{343}a^{11}+\frac{3}{343}a^{10}-\frac{13}{343}a^{9}+\frac{13}{343}a^{8}-\frac{10}{343}a^{7}+\frac{11}{343}a^{6}-\frac{68}{343}a^{5}+\frac{101}{343}a^{4}-\frac{75}{343}a^{3}+\frac{166}{343}a^{2}-\frac{5}{49}a-\frac{3}{7}$, $\frac{1}{20\cdots 89}a^{15}+\frac{30\cdots 58}{29\cdots 27}a^{14}+\frac{18\cdots 51}{20\cdots 89}a^{13}+\frac{10\cdots 00}{20\cdots 89}a^{12}-\frac{20\cdots 25}{20\cdots 89}a^{11}+\frac{11\cdots 25}{20\cdots 89}a^{10}-\frac{88\cdots 89}{20\cdots 89}a^{9}-\frac{13\cdots 75}{20\cdots 89}a^{8}+\frac{21\cdots 49}{20\cdots 89}a^{7}+\frac{13\cdots 29}{20\cdots 89}a^{6}-\frac{21\cdots 74}{20\cdots 89}a^{5}-\frac{56\cdots 03}{20\cdots 89}a^{4}+\frac{75\cdots 69}{20\cdots 89}a^{3}-\frac{28\cdots 08}{20\cdots 89}a^{2}+\frac{19\cdots 74}{29\cdots 27}a-\frac{35\cdots 78}{42\cdots 61}$ Copy content Toggle raw display

Copy content comment:Integral basis
 
Copy content sage:K.integral_basis()
 
Copy content gp:K.zk
 
Copy content magma:IntegralBasis(K);
 
Copy content oscar:basis(OK)
 

Monogenic:  No
Index:  Not computed
Inessential primes:  $7$

Class group and class number

Ideal class group:  Trivial group, which has order $1$ (assuming GRH)
Copy content comment:Class group
 
Copy content sage:K.class_group().invariants()
 
Copy content gp:K.clgp
 
Copy content magma:ClassGroup(K);
 
Copy content oscar:class_group(K)
 
Narrow class group:  Trivial group, which has order $1$ (assuming GRH)
Copy content comment:Narrow class group
 
Copy content sage:K.narrow_class_group().invariants()
 
Copy content gp:bnfnarrow(K)
 
Copy content magma:NarrowClassGroup(K);
 

Unit group

Copy content comment:Unit group
 
Copy content sage:UK = K.unit_group()
 
Copy content magma:UK, fUK := UnitGroup(K);
 
Copy content oscar:UK, fUK = unit_group(OK)
 
Rank:  $7$
Copy content comment:Unit rank
 
Copy content sage:UK.rank()
 
Copy content gp:K.fu
 
Copy content magma:UnitRank(K);
 
Copy content oscar:rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
Copy content comment:Generator for roots of unity
 
Copy content sage:UK.torsion_generator()
 
Copy content gp:K.tu[2]
 
Copy content magma:K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
Copy content oscar:torsion_units_generator(OK)
 
Fundamental units:   $\frac{48\cdots 98}{76\cdots 89}a^{15}-\frac{17\cdots 48}{10\cdots 27}a^{14}-\frac{27\cdots 96}{76\cdots 89}a^{13}+\frac{40\cdots 82}{76\cdots 89}a^{12}-\frac{24\cdots 22}{76\cdots 89}a^{11}+\frac{18\cdots 62}{76\cdots 89}a^{10}-\frac{11\cdots 74}{76\cdots 89}a^{9}-\frac{33\cdots 56}{76\cdots 89}a^{8}+\frac{10\cdots 28}{76\cdots 89}a^{7}-\frac{14\cdots 86}{76\cdots 89}a^{6}+\frac{85\cdots 84}{76\cdots 89}a^{5}-\frac{14\cdots 80}{76\cdots 89}a^{4}+\frac{27\cdots 02}{76\cdots 89}a^{3}+\frac{15\cdots 32}{76\cdots 89}a^{2}-\frac{39\cdots 48}{10\cdots 27}a-\frac{28\cdots 49}{15\cdots 61}$, $\frac{39\cdots 14}{14\cdots 51}a^{15}-\frac{21\cdots 44}{21\cdots 93}a^{14}-\frac{83\cdots 62}{14\cdots 51}a^{13}+\frac{39\cdots 20}{14\cdots 51}a^{12}-\frac{26\cdots 78}{14\cdots 51}a^{11}+\frac{17\cdots 94}{14\cdots 51}a^{10}-\frac{24\cdots 00}{14\cdots 51}a^{9}-\frac{29\cdots 72}{14\cdots 51}a^{8}+\frac{14\cdots 98}{14\cdots 51}a^{7}-\frac{19\cdots 94}{14\cdots 51}a^{6}-\frac{15\cdots 32}{14\cdots 51}a^{5}+\frac{52\cdots 62}{14\cdots 51}a^{4}-\frac{20\cdots 04}{14\cdots 51}a^{3}+\frac{59\cdots 06}{14\cdots 51}a^{2}+\frac{10\cdots 58}{21\cdots 93}a+\frac{60\cdots 23}{30\cdots 99}$, $\frac{17\cdots 30}{20\cdots 89}a^{15}+\frac{18\cdots 52}{29\cdots 27}a^{14}-\frac{62\cdots 80}{20\cdots 89}a^{13}+\frac{11\cdots 42}{20\cdots 89}a^{12}-\frac{51\cdots 20}{20\cdots 89}a^{11}+\frac{47\cdots 70}{20\cdots 89}a^{10}+\frac{11\cdots 93}{20\cdots 89}a^{9}-\frac{81\cdots 41}{20\cdots 89}a^{8}+\frac{76\cdots 71}{20\cdots 89}a^{7}+\frac{14\cdots 32}{20\cdots 89}a^{6}+\frac{90\cdots 07}{20\cdots 89}a^{5}-\frac{26\cdots 35}{20\cdots 89}a^{4}+\frac{33\cdots 72}{20\cdots 89}a^{3}-\frac{35\cdots 77}{20\cdots 89}a^{2}-\frac{57\cdots 33}{29\cdots 27}a-\frac{38\cdots 45}{42\cdots 61}$, $\frac{28\cdots 16}{20\cdots 89}a^{15}-\frac{48\cdots 91}{29\cdots 27}a^{14}-\frac{21\cdots 57}{20\cdots 89}a^{13}+\frac{22\cdots 87}{20\cdots 89}a^{12}+\frac{11\cdots 15}{20\cdots 89}a^{11}-\frac{68\cdots 42}{20\cdots 89}a^{10}+\frac{11\cdots 45}{20\cdots 89}a^{9}+\frac{79\cdots 37}{20\cdots 89}a^{8}-\frac{28\cdots 98}{20\cdots 89}a^{7}-\frac{15\cdots 86}{20\cdots 89}a^{6}+\frac{19\cdots 81}{20\cdots 89}a^{5}-\frac{25\cdots 44}{20\cdots 89}a^{4}+\frac{23\cdots 57}{20\cdots 89}a^{3}+\frac{92\cdots 20}{20\cdots 89}a^{2}-\frac{43\cdots 17}{29\cdots 27}a-\frac{34\cdots 78}{42\cdots 61}$, $\frac{65\cdots 50}{59\cdots 61}a^{15}+\frac{10\cdots 42}{85\cdots 23}a^{14}-\frac{17\cdots 31}{59\cdots 61}a^{13}+\frac{14\cdots 12}{59\cdots 61}a^{12}-\frac{25\cdots 42}{59\cdots 61}a^{11}-\frac{42\cdots 20}{59\cdots 61}a^{10}+\frac{24\cdots 49}{59\cdots 61}a^{9}-\frac{95\cdots 05}{59\cdots 61}a^{8}+\frac{10\cdots 23}{59\cdots 61}a^{7}-\frac{29\cdots 69}{59\cdots 61}a^{6}+\frac{13\cdots 70}{59\cdots 61}a^{5}-\frac{25\cdots 89}{59\cdots 61}a^{4}-\frac{19\cdots 16}{59\cdots 61}a^{3}-\frac{35\cdots 44}{59\cdots 61}a^{2}-\frac{57\cdots 41}{85\cdots 23}a-\frac{38\cdots 74}{12\cdots 89}$, $\frac{27\cdots 24}{20\cdots 89}a^{15}-\frac{25\cdots 98}{29\cdots 27}a^{14}+\frac{70\cdots 67}{20\cdots 89}a^{13}-\frac{12\cdots 29}{20\cdots 89}a^{12}-\frac{70\cdots 37}{20\cdots 89}a^{11}+\frac{13\cdots 45}{20\cdots 89}a^{10}-\frac{64\cdots 57}{20\cdots 89}a^{9}+\frac{13\cdots 70}{20\cdots 89}a^{8}-\frac{15\cdots 95}{20\cdots 89}a^{7}+\frac{63\cdots 56}{20\cdots 89}a^{6}-\frac{22\cdots 73}{20\cdots 89}a^{5}+\frac{26\cdots 99}{20\cdots 89}a^{4}+\frac{24\cdots 18}{20\cdots 89}a^{3}-\frac{90\cdots 94}{20\cdots 89}a^{2}+\frac{47\cdots 11}{29\cdots 27}a+\frac{38\cdots 11}{42\cdots 61}$, $\frac{13\cdots 02}{20\cdots 89}a^{15}+\frac{46\cdots 12}{29\cdots 27}a^{14}-\frac{20\cdots 08}{20\cdots 89}a^{13}+\frac{74\cdots 94}{20\cdots 89}a^{12}-\frac{34\cdots 41}{20\cdots 89}a^{11}+\frac{31\cdots 38}{20\cdots 89}a^{10}+\frac{14\cdots 81}{20\cdots 89}a^{9}-\frac{48\cdots 51}{20\cdots 89}a^{8}-\frac{49\cdots 35}{20\cdots 89}a^{7}-\frac{13\cdots 11}{20\cdots 89}a^{6}+\frac{85\cdots 31}{20\cdots 89}a^{5}-\frac{18\cdots 17}{20\cdots 89}a^{4}+\frac{60\cdots 07}{20\cdots 89}a^{3}+\frac{11\cdots 77}{20\cdots 89}a^{2}-\frac{16\cdots 89}{29\cdots 27}a-\frac{54\cdots 36}{42\cdots 61}$ Copy content Toggle raw display (assuming GRH)
Copy content comment:Fundamental units
 
Copy content sage:UK.fundamental_units()
 
Copy content gp:K.fu
 
Copy content magma:[K|fUK(g): g in Generators(UK)];
 
Copy content oscar:[K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 87394636266.6 \) (assuming GRH)
Copy content comment:Regulator
 
Copy content sage:K.regulator()
 
Copy content gp:K.reg
 
Copy content magma:Regulator(K);
 
Copy content oscar:regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{8}\cdot 87394636266.6 \cdot 1}{2\cdot\sqrt{2946406684936922037860575506582241}}\cr\approx \mathstrut & 1.95545301260 \end{aligned}\] (assuming GRH)

Copy content comment:Analytic class number formula
 
Copy content sage:# self-contained SageMath code snippet to compute the analytic class number formula x = polygen(QQ); K.<a> = NumberField(x^16 - 2*x^15 - 5*x^14 + 78*x^13 - 475*x^12 + 3641*x^11 - 1085*x^10 - 63940*x^9 + 186709*x^8 - 41802*x^7 + 295915*x^6 - 2938105*x^5 + 4953545*x^4 - 102100*x^3 - 303276*x^2 + 7064925*x + 3528539) DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent() hK = K.class_number(); wK = K.unit_group().torsion_generator().order(); 2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
Copy content gp:\\ self-contained Pari/GP code snippet to compute the analytic class number formula K = bnfinit(x^16 - 2*x^15 - 5*x^14 + 78*x^13 - 475*x^12 + 3641*x^11 - 1085*x^10 - 63940*x^9 + 186709*x^8 - 41802*x^7 + 295915*x^6 - 2938105*x^5 + 4953545*x^4 - 102100*x^3 - 303276*x^2 + 7064925*x + 3528539, 1); [polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
Copy content magma:/* self-contained Magma code snippet to compute the analytic class number formula */ Qx<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^16 - 2*x^15 - 5*x^14 + 78*x^13 - 475*x^12 + 3641*x^11 - 1085*x^10 - 63940*x^9 + 186709*x^8 - 41802*x^7 + 295915*x^6 - 2938105*x^5 + 4953545*x^4 - 102100*x^3 - 303276*x^2 + 7064925*x + 3528539); OK := Integers(K); DK := Discriminant(OK); UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK); r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK); hK := #clK; wK := #TorsionSubgroup(UK); 2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
Copy content oscar:# self-contained Oscar code snippet to compute the analytic class number formula Qx, x = polynomial_ring(QQ); K, a = number_field(x^16 - 2*x^15 - 5*x^14 + 78*x^13 - 475*x^12 + 3641*x^11 - 1085*x^10 - 63940*x^9 + 186709*x^8 - 41802*x^7 + 295915*x^6 - 2938105*x^5 + 4953545*x^4 - 102100*x^3 - 303276*x^2 + 7064925*x + 3528539); OK = ring_of_integers(K); DK = discriminant(OK); UK, fUK = unit_group(OK); clK, fclK = class_group(OK); r1,r2 = signature(K); RK = regulator(K); RR = parent(RK); hK = order(clK); wK = torsion_units_order(K); 2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$\OD_{16}:C_2$ (as 16T41):

Copy content comment:Galois group
 
Copy content sage:K.galois_group(type='pari')
 
Copy content gp:polgalois(K.pol)
 
Copy content magma:G = GaloisGroup(K);
 
Copy content oscar:G, Gtx = galois_group(K); degree(K) > 1 ? (G, transitive_group_identification(G)) : (G, nothing)
 
A solvable group of order 32
The 11 conjugacy class representatives for $\OD_{16}:C_2$
Character table for $\OD_{16}:C_2$

Intermediate fields

\(\Q(\sqrt{37}) \), 4.0.50653.1, 4.2.113627.1, 4.2.4204199.1, 8.0.653985701569237.1 x2, 8.0.17675289231601.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Copy content comment:Intermediate fields
 
Copy content sage:K.subfields()[1:-1]
 
Copy content gp:L = nfsubfields(K); L[2..length(L)]
 
Copy content magma:L := Subfields(K); L[2..#L];
 
Copy content oscar:subfields(K)[2:end-1]
 

Sibling fields

Galois closure: deg 32
Degree 8 siblings: 8.0.653985701569237.1, 8.4.4505307498110473693.1
Degree 16 siblings: 16.0.20297795652530455918821504664845058249.1, 16.4.20297795652530455918821504664845058249.1
Minimal sibling: 8.0.653985701569237.1

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type ${\href{/padicField/2.8.0.1}{8} }^{2}$ ${\href{/padicField/3.4.0.1}{4} }^{4}$ ${\href{/padicField/5.8.0.1}{8} }^{2}$ ${\href{/padicField/7.1.0.1}{1} }^{16}$ ${\href{/padicField/11.4.0.1}{4} }^{4}$ ${\href{/padicField/13.8.0.1}{8} }^{2}$ ${\href{/padicField/17.8.0.1}{8} }^{2}$ ${\href{/padicField/19.8.0.1}{8} }^{2}$ ${\href{/padicField/23.8.0.1}{8} }^{2}$ ${\href{/padicField/29.8.0.1}{8} }^{2}$ ${\href{/padicField/31.8.0.1}{8} }^{2}$ R ${\href{/padicField/41.4.0.1}{4} }^{4}$ ${\href{/padicField/43.8.0.1}{8} }^{2}$ ${\href{/padicField/47.2.0.1}{2} }^{6}{,}\,{\href{/padicField/47.1.0.1}{1} }^{4}$ ${\href{/padicField/53.2.0.1}{2} }^{6}{,}\,{\href{/padicField/53.1.0.1}{1} }^{4}$ ${\href{/padicField/59.8.0.1}{8} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

Copy content comment:Frobenius cycle types
 
Copy content sage:# to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Sage: p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
Copy content gp:\\ to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Pari: p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
Copy content magma:// to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Magma: p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
Copy content oscar:# to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Oscar: p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(37\) Copy content Toggle raw display 37.2.8.14a1.2$x^{16} + 264 x^{15} + 30508 x^{14} + 2016168 x^{13} + 83380486 x^{12} + 2211728904 x^{11} + 36827048860 x^{10} + 354177608664 x^{9} + 1553050257889 x^{8} + 708355217328 x^{7} + 147308195440 x^{6} + 17693831232 x^{5} + 1334087776 x^{4} + 64517376 x^{3} + 1952512 x^{2} + 33792 x + 293$$8$$2$$14$$C_8: C_2$$$[\ ]_{8}^{2}$$
\(83\) Copy content Toggle raw display 83.2.1.0a1.1$x^{2} + 82 x + 2$$1$$2$$0$$C_2$$$[\ ]^{2}$$
83.1.2.1a1.2$x^{2} + 166$$2$$1$$1$$C_2$$$[\ ]_{2}$$
83.2.1.0a1.1$x^{2} + 82 x + 2$$1$$2$$0$$C_2$$$[\ ]^{2}$$
83.1.2.1a1.2$x^{2} + 166$$2$$1$$1$$C_2$$$[\ ]_{2}$$
83.2.2.2a1.2$x^{4} + 164 x^{3} + 6728 x^{2} + 328 x + 87$$2$$2$$2$$C_2^2$$$[\ ]_{2}^{2}$$
83.2.2.2a1.2$x^{4} + 164 x^{3} + 6728 x^{2} + 328 x + 87$$2$$2$$2$$C_2^2$$$[\ ]_{2}^{2}$$

Spectrum of ring of integers

(0)(0)(2)(3)(5)(7)(11)(13)(17)(19)(23)(29)(31)(37)(41)(43)(47)(53)(59)