Normalized defining polynomial
\( x^{16} - 2 x^{15} - 5 x^{14} + 78 x^{13} - 475 x^{12} + 3641 x^{11} - 1085 x^{10} - 63940 x^{9} + 186709 x^{8} - 41802 x^{7} + 295915 x^{6} - 2938105 x^{5} + 4953545 x^{4} - 102100 x^{3} - 303276 x^{2} + 7064925 x + 3528539 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(2946406684936922037860575506582241=37^{14}\cdot 83^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $123.55$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $37, 83$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{7} a^{6} - \frac{3}{7} a^{5} + \frac{2}{7} a^{4} + \frac{1}{7} a^{3} - \frac{3}{7} a^{2} + \frac{2}{7} a$, $\frac{1}{7} a^{7} - \frac{1}{7} a$, $\frac{1}{7} a^{8} - \frac{1}{7} a^{2}$, $\frac{1}{7} a^{9} - \frac{1}{7} a^{3}$, $\frac{1}{7} a^{10} - \frac{1}{7} a^{4}$, $\frac{1}{49} a^{11} - \frac{1}{49} a^{10} + \frac{1}{49} a^{9} + \frac{2}{49} a^{8} + \frac{2}{49} a^{7} + \frac{1}{49} a^{6} + \frac{17}{49} a^{5} - \frac{18}{49} a^{4} + \frac{16}{49} a^{2} - \frac{3}{7} a$, $\frac{1}{49} a^{12} + \frac{3}{49} a^{9} - \frac{3}{49} a^{8} + \frac{3}{49} a^{7} - \frac{3}{49} a^{6} + \frac{13}{49} a^{5} - \frac{11}{49} a^{4} - \frac{5}{49} a^{3} + \frac{16}{49} a^{2} - \frac{2}{7} a$, $\frac{1}{49} a^{13} + \frac{3}{49} a^{10} - \frac{3}{49} a^{9} + \frac{3}{49} a^{8} - \frac{3}{49} a^{7} - \frac{1}{49} a^{6} - \frac{18}{49} a^{5} + \frac{16}{49} a^{4} + \frac{2}{49} a^{3} - \frac{3}{7} a^{2} + \frac{3}{7} a$, $\frac{1}{343} a^{14} + \frac{2}{343} a^{13} - \frac{1}{343} a^{12} + \frac{3}{343} a^{11} + \frac{3}{343} a^{10} - \frac{13}{343} a^{9} + \frac{13}{343} a^{8} - \frac{10}{343} a^{7} + \frac{11}{343} a^{6} - \frac{68}{343} a^{5} + \frac{101}{343} a^{4} - \frac{75}{343} a^{3} + \frac{166}{343} a^{2} - \frac{5}{49} a - \frac{3}{7}$, $\frac{1}{20797168317419612357686405738782028472409089} a^{15} + \frac{3009868475597793168956687297556061882558}{2971024045345658908240915105540289781772727} a^{14} + \frac{181665854476536240713221957956523293800651}{20797168317419612357686405738782028472409089} a^{13} + \frac{105830469723359017137572129035526217017200}{20797168317419612357686405738782028472409089} a^{12} - \frac{206866992471510742881082271062513401177425}{20797168317419612357686405738782028472409089} a^{11} + \frac{1157085247042036711603217086880306874954225}{20797168317419612357686405738782028472409089} a^{10} - \frac{888137081967886273108721345347381682968589}{20797168317419612357686405738782028472409089} a^{9} - \frac{1333121936537465735733843374397062125158975}{20797168317419612357686405738782028472409089} a^{8} + \frac{211463414234814924460897745287956180913649}{20797168317419612357686405738782028472409089} a^{7} + \frac{1327968667011365430223678922089483191787329}{20797168317419612357686405738782028472409089} a^{6} - \frac{2169895897491515032108313766720707822334474}{20797168317419612357686405738782028472409089} a^{5} - \frac{5619883100770549451069203886730258772215503}{20797168317419612357686405738782028472409089} a^{4} + \frac{7577453741965765230616389017247681238557369}{20797168317419612357686405738782028472409089} a^{3} - \frac{2862601852787358971088235167764624268615508}{20797168317419612357686405738782028472409089} a^{2} + \frac{192988334401282036660443591343332531653774}{2971024045345658908240915105540289781772727} a - \frac{358454689450270441585913067130715373778}{424432006477951272605845015077184254538961}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 87394636266.6 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^3.C_4$ (as 16T41):
| A solvable group of order 32 |
| The 11 conjugacy class representatives for $C_2^3.C_4$ |
| Character table for $C_2^3.C_4$ |
Intermediate fields
| \(\Q(\sqrt{37}) \), 4.0.50653.1, 4.2.113627.1, 4.2.4204199.1, 8.0.653985701569237.1 x2, 8.0.17675289231601.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 8 siblings: | data not computed |
| Degree 16 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/7.1.0.1}{1} }^{16}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 37 | Data not computed | ||||||
| 83 | Data not computed | ||||||