Normalized defining polynomial
\( x^{16} - 2 x^{15} + 15 x^{14} + 345 x^{13} - 8761 x^{12} - 21267 x^{11} - 3437 x^{10} + 998855 x^{9} + 18367581 x^{8} - 37933807 x^{7} + 155539363 x^{6} - 563384901 x^{5} - 11591574241 x^{4} + 9061447011 x^{3} - 118330534131 x^{2} + 1006440846256 x + 9114300768451 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(29233126977165462000179004150390625=5^{12}\cdot 149^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $142.60$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 149$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{5001018884794} a^{14} + \frac{108872261785}{5001018884794} a^{13} + \frac{2312616314035}{5001018884794} a^{12} + \frac{356961241559}{5001018884794} a^{11} + \frac{413963410225}{5001018884794} a^{10} - \frac{1269400317921}{5001018884794} a^{9} - \frac{1505243534343}{5001018884794} a^{8} + \frac{2031733093623}{5001018884794} a^{7} + \frac{2302034351149}{5001018884794} a^{6} + \frac{825061574773}{5001018884794} a^{5} - \frac{1294141830653}{5001018884794} a^{4} + \frac{1246387242681}{5001018884794} a^{3} - \frac{455614759709}{5001018884794} a^{2} + \frac{1854506275015}{5001018884794} a + \frac{188275348111}{5001018884794}$, $\frac{1}{93020089033466470311639513284465814468904173234596231445653040950977738276717574} a^{15} + \frac{198190773700796140764034916920175893513334304757834447871800572975}{93020089033466470311639513284465814468904173234596231445653040950977738276717574} a^{14} - \frac{36373701360729868069247636536766272213831302178107574614006416457255601384298527}{93020089033466470311639513284465814468904173234596231445653040950977738276717574} a^{13} + \frac{27944401237937505738947155396249969157992243701026433043647290881089554778955113}{93020089033466470311639513284465814468904173234596231445653040950977738276717574} a^{12} - \frac{9934574947612648880802031034943799380895386847590088378045834630026876162808391}{93020089033466470311639513284465814468904173234596231445653040950977738276717574} a^{11} - \frac{19164661974876694014545318684784750443542534837192597464526593203853560561278833}{93020089033466470311639513284465814468904173234596231445653040950977738276717574} a^{10} - \frac{20449323768492464457730437785815895934747853654410288102329225508859175127065967}{93020089033466470311639513284465814468904173234596231445653040950977738276717574} a^{9} - \frac{15323094202772919529716562389306793248064301048899413944222972766575527747839425}{93020089033466470311639513284465814468904173234596231445653040950977738276717574} a^{8} + \frac{13458956790348885960279138053794652521846024586111634319468769409896810456619553}{93020089033466470311639513284465814468904173234596231445653040950977738276717574} a^{7} + \frac{9692352839770037208538182216749668340213697552377505622156910821344306369513323}{93020089033466470311639513284465814468904173234596231445653040950977738276717574} a^{6} - \frac{1551178316969794541360509513079945299705881936831945830471531243463127728988405}{93020089033466470311639513284465814468904173234596231445653040950977738276717574} a^{5} - \frac{424961905857367935518155016503249475722203032251532403504100092152474452818255}{3000648033337628074569016557563413369964650749503104240182356159708959299248954} a^{4} - \frac{8332525115724227669129552167561120876453942990044253403921882636597128426825645}{93020089033466470311639513284465814468904173234596231445653040950977738276717574} a^{3} + \frac{3588382524651609664809969309323118853017727432261884021775648431298858264890141}{93020089033466470311639513284465814468904173234596231445653040950977738276717574} a^{2} + \frac{33847677864028466213324692712235037637427635132324317887831378861141212289240037}{93020089033466470311639513284465814468904173234596231445653040950977738276717574} a - \frac{4731138439401901537327474220158735553497604653675624394244797750835886644662328}{46510044516733235155819756642232907234452086617298115722826520475488869138358787}$
Class group and class number
$C_{2}\times C_{10}\times C_{10}$, which has order $200$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 119396488.81 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 16 |
| The 10 conjugacy class representatives for $C_4:C_4$ |
| Character table for $C_4:C_4$ |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |
| 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| $149$ | 149.4.3.1 | $x^{4} - 149$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 149.4.3.1 | $x^{4} - 149$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 149.4.3.1 | $x^{4} - 149$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 149.4.3.1 | $x^{4} - 149$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |