Normalized defining polynomial
\( x^{16} - 4 x^{15} + 109 x^{14} - 364 x^{13} + 6330 x^{12} - 19774 x^{11} + 227457 x^{10} - 596057 x^{9} + 5325668 x^{8} - 9941937 x^{7} + 86452747 x^{6} - 92670513 x^{5} + 1175303819 x^{4} - 209534153 x^{3} + 9069376118 x^{2} + 174773137 x + 45464483611 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(29233126977165462000179004150390625=5^{12}\cdot 149^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $142.60$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 149$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3}$, $\frac{1}{443841520} a^{12} - \frac{3}{443841520} a^{11} + \frac{11399765}{88768304} a^{10} - \frac{11963817}{88768304} a^{9} - \frac{8334177}{221920760} a^{8} + \frac{30285635}{88768304} a^{7} + \frac{94050243}{221920760} a^{6} - \frac{34908307}{88768304} a^{5} + \frac{5777123}{221920760} a^{4} - \frac{22199161}{88768304} a^{3} + \frac{12891577}{88768304} a^{2} + \frac{92369639}{221920760} a + \frac{11466631}{443841520}$, $\frac{1}{2219207600} a^{13} - \frac{1}{1109603800} a^{12} - \frac{10180071}{58400200} a^{11} + \frac{22051063}{110960380} a^{10} + \frac{145433321}{2219207600} a^{9} - \frac{309081699}{2219207600} a^{8} + \frac{339528661}{2219207600} a^{7} - \frac{22646451}{116800400} a^{6} + \frac{502774991}{2219207600} a^{5} + \frac{788241481}{2219207600} a^{4} - \frac{3561501}{11096038} a^{3} + \frac{914959443}{2219207600} a^{2} + \frac{14418161}{76524400} a + \frac{11466631}{2219207600}$, $\frac{1}{2219207600} a^{14} - \frac{1}{1109603800} a^{12} - \frac{95897109}{554801900} a^{11} - \frac{292700659}{2219207600} a^{10} + \frac{2796497}{116800400} a^{9} - \frac{496728737}{2219207600} a^{8} + \frac{325117853}{2219207600} a^{7} - \frac{1104819547}{2219207600} a^{6} - \frac{1066471637}{2219207600} a^{5} - \frac{297087119}{1109603800} a^{4} + \frac{304245343}{2219207600} a^{3} + \frac{42234331}{443841520} a^{2} + \frac{576436369}{2219207600} a + \frac{204347181}{1109603800}$, $\frac{1}{24696134648643879131491060828108753648972400} a^{15} - \frac{872821011945268338282287690128407}{24696134648643879131491060828108753648972400} a^{14} + \frac{431091272516945762071225915351429}{3087016831080484891436382603513594206121550} a^{13} + \frac{118836300627429446254655496319879}{129979656045494100692058214884782913941960} a^{12} - \frac{2443686072958757514251841290509464692243639}{24696134648643879131491060828108753648972400} a^{11} + \frac{1101688773891777406486338648541322268663049}{6174033662160969782872765207027188412243100} a^{10} + \frac{317283760331929839994812648537931619491247}{3087016831080484891436382603513594206121550} a^{9} + \frac{209535437395056223671689984041699823719423}{12348067324321939565745530414054376824486200} a^{8} - \frac{87232527820450590560043802240058795657743}{3087016831080484891436382603513594206121550} a^{7} + \frac{1133747957215738059401629251452593618470423}{12348067324321939565745530414054376824486200} a^{6} + \frac{2261921938146359927904490902103249807789763}{4939226929728775826298212165621750729794480} a^{5} + \frac{4712231189448563399708532309453909575085763}{24696134648643879131491060828108753648972400} a^{4} - \frac{1995502659699223747381372947191362836655823}{12348067324321939565745530414054376824486200} a^{3} + \frac{1770011222326214197526116508101546048757473}{12348067324321939565745530414054376824486200} a^{2} - \frac{469749435680895467202904663512679318523371}{987845385945755165259642433124350145958896} a + \frac{1632644392820247833192993350471941636989}{42579542497661860571536311772601299394780}$
Class group and class number
$C_{5}\times C_{60}\times C_{60}$, which has order $18000$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 2895687.10401 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 16 |
| The 10 conjugacy class representatives for $C_4:C_4$ |
| Character table for $C_4:C_4$ |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.4.3.1 | $x^{4} - 5$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 5.4.3.1 | $x^{4} - 5$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 5.4.3.1 | $x^{4} - 5$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 5.4.3.1 | $x^{4} - 5$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| $149$ | 149.8.6.1 | $x^{8} - 1043 x^{4} + 1798281$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |
| 149.8.6.1 | $x^{8} - 1043 x^{4} + 1798281$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |