Normalized defining polynomial
\( x^{16} - 5 x^{15} + 69 x^{14} - 70 x^{13} + 2770 x^{12} - 1125 x^{11} + 184986 x^{10} + 510300 x^{9} + 7821279 x^{8} - 4592700 x^{7} + 14983866 x^{6} + 820125 x^{5} + 18173970 x^{4} + 4133430 x^{3} + 36669429 x^{2} + 23914845 x + 43046721 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(29233126977165462000179004150390625=5^{12}\cdot 149^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $142.60$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 149$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $\frac{1}{3} a^{5} + \frac{1}{3} a^{4} - \frac{1}{3} a^{2} + \frac{1}{3} a$, $\frac{1}{9} a^{6} + \frac{1}{9} a^{5} + \frac{1}{3} a^{4} + \frac{2}{9} a^{3} + \frac{1}{9} a^{2} - \frac{1}{3} a$, $\frac{1}{27} a^{7} + \frac{1}{27} a^{6} + \frac{1}{9} a^{5} + \frac{11}{27} a^{4} + \frac{1}{27} a^{3} + \frac{2}{9} a^{2}$, $\frac{1}{81} a^{8} + \frac{1}{81} a^{7} + \frac{1}{27} a^{6} + \frac{11}{81} a^{5} + \frac{1}{81} a^{4} + \frac{11}{27} a^{3} - \frac{1}{3} a^{2} + \frac{1}{3} a$, $\frac{1}{243} a^{9} + \frac{1}{243} a^{8} + \frac{1}{81} a^{7} + \frac{11}{243} a^{6} + \frac{1}{243} a^{5} + \frac{38}{81} a^{4} - \frac{1}{9} a^{3} + \frac{4}{9} a^{2}$, $\frac{1}{729} a^{10} + \frac{1}{729} a^{9} + \frac{1}{243} a^{8} + \frac{11}{729} a^{7} + \frac{1}{729} a^{6} + \frac{38}{243} a^{5} + \frac{8}{27} a^{4} + \frac{4}{27} a^{3} - \frac{1}{3} a^{2} - \frac{1}{3} a$, $\frac{1}{2187} a^{11} + \frac{1}{2187} a^{10} + \frac{1}{729} a^{9} + \frac{11}{2187} a^{8} + \frac{1}{2187} a^{7} + \frac{38}{729} a^{6} + \frac{8}{81} a^{5} - \frac{23}{81} a^{4} + \frac{2}{9} a^{3} + \frac{2}{9} a^{2} - \frac{1}{3} a$, $\frac{1}{33841638} a^{12} + \frac{383}{16920819} a^{11} + \frac{176}{5640273} a^{10} - \frac{21625}{33841638} a^{9} + \frac{30155}{16920819} a^{8} + \frac{64975}{5640273} a^{7} + \frac{139013}{3760182} a^{6} + \frac{7237}{626697} a^{5} - \frac{98795}{208899} a^{4} - \frac{53759}{139266} a^{3} - \frac{8143}{23211} a^{2} - \frac{25}{7737} a + \frac{81}{5158}$, $\frac{1}{304574742} a^{13} + \frac{2}{152287371} a^{12} - \frac{4262}{50762457} a^{11} + \frac{9299}{304574742} a^{10} + \frac{261485}{152287371} a^{9} - \frac{78836}{16920819} a^{8} - \frac{156251}{33841638} a^{7} - \frac{70265}{1880091} a^{6} + \frac{128786}{1880091} a^{5} - \frac{3623}{139266} a^{4} + \frac{93218}{208899} a^{3} + \frac{1426}{7737} a^{2} + \frac{12781}{46422} a - \frac{850}{2579}$, $\frac{1}{1629615701710378638} a^{14} - \frac{1122707203}{814807850855189319} a^{13} + \frac{3174941071}{271602616951729773} a^{12} + \frac{140953500441515}{1629615701710378638} a^{11} + \frac{412194879326672}{814807850855189319} a^{10} - \frac{3114306883832}{10059356183397399} a^{9} - \frac{156692219499677}{181068411301153182} a^{8} - \frac{165308712722816}{10059356183397399} a^{7} + \frac{62612480599163}{10059356183397399} a^{6} + \frac{142937467758533}{2235412485199422} a^{5} - \frac{471457195243057}{1117706242599711} a^{4} + \frac{2790131272892}{124189582511079} a^{3} + \frac{44258198364601}{248379165022158} a^{2} - \frac{2073402570331}{4599614167077} a - \frac{418227810078}{1533204722359}$, $\frac{1}{1043685746544710288328462} a^{15} - \frac{41281}{521842873272355144164231} a^{14} - \frac{164751011684267}{173947624424118381388077} a^{13} + \frac{856135182303155}{1043685746544710288328462} a^{12} + \frac{71207092446994491686}{521842873272355144164231} a^{11} - \frac{16759978027557968369}{57982541474706127129359} a^{10} + \frac{72247929641766849445}{115965082949412254258718} a^{9} + \frac{24274431827788583315}{6442504608300680792151} a^{8} - \frac{25864668327878126812}{6442504608300680792151} a^{7} - \frac{34692699213344924213}{1431667690733484620478} a^{6} + \frac{35425587058598205710}{715833845366742310239} a^{5} + \frac{2209076564781518849}{26512364643212678157} a^{4} + \frac{43311916101987347749}{159074187859276068942} a^{3} + \frac{183347366030226559}{8837454881070892719} a^{2} - \frac{137602252490416877}{327313143743366397} a + \frac{30010024860779131}{109104381247788799}$
Class group and class number
$C_{10}\times C_{10}\times C_{10}$, which has order $1000$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{2149113658875905}{521842873272355144164231} a^{15} + \frac{7047005652107452}{521842873272355144164231} a^{14} - \frac{39699399316120321}{173947624424118381388077} a^{13} - \frac{179347821094037164}{521842873272355144164231} a^{12} - \frac{4870502322153102230}{521842873272355144164231} a^{11} - \frac{122252634130355225}{6442504608300680792151} a^{10} - \frac{40419951175121055341}{57982541474706127129359} a^{9} - \frac{22815409333297076710}{6442504608300680792151} a^{8} - \frac{206777727347054544437}{6442504608300680792151} a^{7} - \frac{23864416623057390982}{715833845366742310239} a^{6} + \frac{74145165763467048592}{715833845366742310239} a^{5} - \frac{42105784532021428073}{79537093929638034471} a^{4} + \frac{12177897637865423422}{79537093929638034471} a^{3} - \frac{232894891147631530}{2945818293690297573} a^{2} - \frac{202319072529369247}{981939431230099191} a - \frac{18978467875532993}{109104381247788799} \) (order $10$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 106425286.202 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 16 |
| The 10 conjugacy class representatives for $C_4:C_4$ |
| Character table for $C_4:C_4$ |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |
| 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| $149$ | 149.8.6.1 | $x^{8} - 1043 x^{4} + 1798281$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |
| 149.8.6.1 | $x^{8} - 1043 x^{4} + 1798281$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |