Normalized defining polynomial
\( x^{16} - 3 x^{15} - 15 x^{14} + 49 x^{13} - 92 x^{12} + 476 x^{11} + 1379 x^{10} - 9661 x^{9} + 24109 x^{8} + 1428 x^{7} - 67861 x^{6} + 59049 x^{5} + 407030 x^{4} - 1268099 x^{3} + 1779996 x^{2} - 1223664 x + 387427 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(2914504613122855682608891338761=37^{4}\cdot 41^{15}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $80.17$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $37, 41$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{4} a^{12} - \frac{1}{4} a^{11} - \frac{1}{2} a^{9} + \frac{1}{4} a^{8} + \frac{1}{4} a^{7} - \frac{1}{2} a^{6} - \frac{1}{4} a^{3} - \frac{1}{4} a^{2} - \frac{1}{2} a - \frac{1}{4}$, $\frac{1}{4} a^{13} - \frac{1}{4} a^{11} - \frac{1}{4} a^{9} + \frac{1}{4} a^{7} - \frac{1}{2} a^{5} - \frac{1}{4} a^{4} - \frac{1}{4} a^{2} - \frac{1}{4} a + \frac{1}{4}$, $\frac{1}{296} a^{14} + \frac{5}{74} a^{13} - \frac{9}{74} a^{12} - \frac{39}{296} a^{11} + \frac{47}{296} a^{10} - \frac{27}{74} a^{9} - \frac{4}{37} a^{8} + \frac{3}{8} a^{7} + \frac{11}{148} a^{6} + \frac{47}{296} a^{5} - \frac{53}{148} a^{4} - \frac{9}{74} a^{3} - \frac{33}{74} a^{2} + \frac{1}{8} a - \frac{1}{8}$, $\frac{1}{153973752264523792001209833057831643530728} a^{15} - \frac{42175920043839171990464262780429927767}{38493438066130948000302458264457910882682} a^{14} + \frac{3060618024644707142197342483111039543121}{76986876132261896000604916528915821765364} a^{13} - \frac{5158277398433682580687709251283403764649}{153973752264523792001209833057831643530728} a^{12} + \frac{33945202357263617457697689757846279649223}{153973752264523792001209833057831643530728} a^{11} + \frac{520782391934370205342958880580931676435}{19246719033065474000151229132228955441341} a^{10} - \frac{35770034650123815820387846178757249602631}{76986876132261896000604916528915821765364} a^{9} + \frac{37051363383169088678942787366952190413677}{153973752264523792001209833057831643530728} a^{8} - \frac{9141341005754267049566025747114297657383}{76986876132261896000604916528915821765364} a^{7} - \frac{827642489321759291796926241069161911753}{4161452763906048432465130623184639014344} a^{6} + \frac{6112896709087455526867482551866635553075}{76986876132261896000604916528915821765364} a^{5} - \frac{7257680534216906779374381566235303076203}{76986876132261896000604916528915821765364} a^{4} - \frac{28101720466959741185258199836508919428205}{76986876132261896000604916528915821765364} a^{3} - \frac{26638684009417937815726583628608045931367}{153973752264523792001209833057831643530728} a^{2} - \frac{586571145545997557551728296702898574531}{4161452763906048432465130623184639014344} a - \frac{439689827712999326749100107525031828857}{1040363190976512108116282655796159753586}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 110623817.988 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 512 |
| The 32 conjugacy class representatives for t16n841 |
| Character table for t16n841 is not computed |
Intermediate fields
| \(\Q(\sqrt{41}) \), 4.4.68921.1, 8.0.194754273881.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | $16$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | $16$ | $16$ | $16$ | $16$ | $16$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{4}$ | $16$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}$ | R | R | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | $16$ | $16$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 37 | Data not computed | ||||||
| 41 | Data not computed | ||||||