Normalized defining polynomial
\( x^{16} - 4 x^{15} + 28 x^{14} - 19 x^{13} + 59 x^{12} + 842 x^{11} + 7 x^{10} - 1417 x^{9} + 6045 x^{8} + 12419 x^{7} - 14665 x^{6} - 74851 x^{5} - 49199 x^{4} + 121382 x^{3} + 231785 x^{2} + 142491 x + 50153 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(2914504613122855682608891338761=37^{4}\cdot 41^{15}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $80.17$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $37, 41$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{82581295077622710192897854139649786842637} a^{15} + \frac{6649513075478823461911721527036069845223}{82581295077622710192897854139649786842637} a^{14} + \frac{592209320725178043848836398673623947832}{2663912744439442264287027552891928607827} a^{13} - \frac{36457497904290984782421268821146914069032}{82581295077622710192897854139649786842637} a^{12} + \frac{28955233459769165317304362630908759944506}{82581295077622710192897854139649786842637} a^{11} - \frac{2194077700229875039382665085486901288010}{82581295077622710192897854139649786842637} a^{10} - \frac{25028610733945078096112731290301867304702}{82581295077622710192897854139649786842637} a^{9} + \frac{30012276739258732937683733580133729260698}{82581295077622710192897854139649786842637} a^{8} + \frac{9723754074951809063121172870428875982508}{82581295077622710192897854139649786842637} a^{7} - \frac{2695850621193405401205564766405060412135}{82581295077622710192897854139649786842637} a^{6} + \frac{18357335811377829829915900295819304397051}{82581295077622710192897854139649786842637} a^{5} + \frac{14941249341689638908032066451553258075088}{82581295077622710192897854139649786842637} a^{4} - \frac{9638285061837929292911271202685871360537}{82581295077622710192897854139649786842637} a^{3} + \frac{23424569025335727666840435743565657508081}{82581295077622710192897854139649786842637} a^{2} - \frac{927567873445053509927019972798916546916}{2231926893989802978186428490260805049801} a - \frac{8779670528652243005543667165208433237963}{82581295077622710192897854139649786842637}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 130743479.743 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 512 |
| The 32 conjugacy class representatives for t16n841 |
| Character table for t16n841 is not computed |
Intermediate fields
| \(\Q(\sqrt{41}) \), 4.4.68921.1, 8.0.194754273881.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | $16$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | $16$ | $16$ | $16$ | $16$ | $16$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{4}$ | $16$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}$ | R | R | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | $16$ | $16$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{12}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 37 | Data not computed | ||||||
| 41 | Data not computed | ||||||