Properties

Label 16.0.29099519213...5625.1
Degree $16$
Signature $[0, 8]$
Discriminant $5^{8}\cdot 19^{4}\cdot 29^{6}\cdot 31^{2}$
Root discriminant $25.35$
Ramified primes $5, 19, 29, 31$
Class number $8$
Class group $[2, 4]$
Galois group 16T876

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![121, 627, 1909, 3423, 4475, 3853, 2882, 1529, 1236, 670, 460, 96, 74, 12, 12, -1, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^16 - x^15 + 12*x^14 + 12*x^13 + 74*x^12 + 96*x^11 + 460*x^10 + 670*x^9 + 1236*x^8 + 1529*x^7 + 2882*x^6 + 3853*x^5 + 4475*x^4 + 3423*x^3 + 1909*x^2 + 627*x + 121)
 
gp: K = bnfinit(x^16 - x^15 + 12*x^14 + 12*x^13 + 74*x^12 + 96*x^11 + 460*x^10 + 670*x^9 + 1236*x^8 + 1529*x^7 + 2882*x^6 + 3853*x^5 + 4475*x^4 + 3423*x^3 + 1909*x^2 + 627*x + 121, 1)
 

Normalized defining polynomial

\( x^{16} - x^{15} + 12 x^{14} + 12 x^{13} + 74 x^{12} + 96 x^{11} + 460 x^{10} + 670 x^{9} + 1236 x^{8} + 1529 x^{7} + 2882 x^{6} + 3853 x^{5} + 4475 x^{4} + 3423 x^{3} + 1909 x^{2} + 627 x + 121 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $16$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 8]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(29099519213052891015625=5^{8}\cdot 19^{4}\cdot 29^{6}\cdot 31^{2}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $25.35$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $5, 19, 29, 31$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{156597318115918627998061} a^{15} - \frac{75186115757425880761258}{156597318115918627998061} a^{14} - \frac{32744263974481325311088}{156597318115918627998061} a^{13} - \frac{28177030435251292776708}{156597318115918627998061} a^{12} - \frac{55186996053714288172544}{156597318115918627998061} a^{11} - \frac{24474549469535083099503}{156597318115918627998061} a^{10} + \frac{40253592834605658986014}{156597318115918627998061} a^{9} - \frac{66785225931143451795350}{156597318115918627998061} a^{8} - \frac{46430191670216573311660}{156597318115918627998061} a^{7} - \frac{26759241241308063136}{14236119828719875272551} a^{6} + \frac{4236663076383451625875}{14236119828719875272551} a^{5} - \frac{9722273742314974839897}{156597318115918627998061} a^{4} - \frac{43672811024263559357727}{156597318115918627998061} a^{3} + \frac{50218344443990844313568}{156597318115918627998061} a^{2} + \frac{26349310772427333005552}{156597318115918627998061} a + \frac{1199015851361667121963}{14236119828719875272551}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{2}\times C_{4}$, which has order $8$

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $7$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 3033.18899555 \)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

16T876:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 512
The 65 conjugacy class representatives for t16n876 are not computed
Character table for t16n876 is not computed

Intermediate fields

\(\Q(\sqrt{5}) \), 4.4.725.1, 8.0.5502768125.2, 8.8.309593125.1, 8.0.8978200625.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 16 siblings: data not computed
Degree 32 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ R ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/11.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/13.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ R ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{4}$ R R ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$5$5.8.4.1$x^{8} + 10 x^{6} + 125 x^{4} + 2500$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
5.8.4.1$x^{8} + 10 x^{6} + 125 x^{4} + 2500$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
$19$19.4.2.1$x^{4} + 57 x^{2} + 1444$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
19.4.0.1$x^{4} - 2 x + 10$$1$$4$$0$$C_4$$[\ ]^{4}$
19.4.2.1$x^{4} + 57 x^{2} + 1444$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
19.4.0.1$x^{4} - 2 x + 10$$1$$4$$0$$C_4$$[\ ]^{4}$
$29$29.4.0.1$x^{4} - x + 19$$1$$4$$0$$C_4$$[\ ]^{4}$
29.4.0.1$x^{4} - x + 19$$1$$4$$0$$C_4$$[\ ]^{4}$
29.8.6.2$x^{8} + 145 x^{4} + 7569$$4$$2$$6$$C_4\times C_2$$[\ ]_{4}^{2}$
31Data not computed