Properties

Label 16.0.29096149310...4464.2
Degree $16$
Signature $[0, 8]$
Discriminant $2^{42}\cdot 17^{4}\cdot 89^{2}$
Root discriminant $21.95$
Ramified primes $2, 17, 89$
Class number $1$
Class group Trivial
Galois group 16T799

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![7921, 0, 5340, 0, -282, 0, -564, 0, 162, 0, -52, 0, 22, 0, -4, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^16 - 4*x^14 + 22*x^12 - 52*x^10 + 162*x^8 - 564*x^6 - 282*x^4 + 5340*x^2 + 7921)
 
gp: K = bnfinit(x^16 - 4*x^14 + 22*x^12 - 52*x^10 + 162*x^8 - 564*x^6 - 282*x^4 + 5340*x^2 + 7921, 1)
 

Normalized defining polynomial

\( x^{16} - 4 x^{14} + 22 x^{12} - 52 x^{10} + 162 x^{8} - 564 x^{6} - 282 x^{4} + 5340 x^{2} + 7921 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $16$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 8]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(2909614931061678014464=2^{42}\cdot 17^{4}\cdot 89^{2}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $21.95$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 17, 89$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8} - \frac{1}{2}$, $\frac{1}{2} a^{9} - \frac{1}{2} a$, $\frac{1}{28} a^{10} - \frac{1}{4} a^{8} - \frac{3}{7} a^{4} + \frac{9}{28} a^{2} + \frac{9}{28}$, $\frac{1}{56} a^{11} - \frac{1}{56} a^{10} + \frac{1}{8} a^{9} - \frac{1}{8} a^{8} + \frac{2}{7} a^{5} - \frac{2}{7} a^{4} + \frac{9}{56} a^{3} - \frac{9}{56} a^{2} + \frac{23}{56} a - \frac{23}{56}$, $\frac{1}{9968} a^{12} + \frac{37}{4984} a^{10} - \frac{253}{1424} a^{8} - \frac{104}{623} a^{6} + \frac{577}{9968} a^{4} + \frac{1573}{4984} a^{2} + \frac{45}{112}$, $\frac{1}{19936} a^{13} - \frac{1}{19936} a^{12} + \frac{37}{9968} a^{11} - \frac{37}{9968} a^{10} - \frac{253}{2848} a^{9} + \frac{253}{2848} a^{8} + \frac{519}{1246} a^{7} - \frac{519}{1246} a^{6} - \frac{9391}{19936} a^{5} + \frac{9391}{19936} a^{4} + \frac{1573}{9968} a^{3} - \frac{1573}{9968} a^{2} - \frac{67}{224} a + \frac{67}{224}$, $\frac{1}{926266432} a^{14} + \frac{5859}{132323776} a^{12} + \frac{1052581}{132323776} a^{10} + \frac{36076791}{926266432} a^{8} - \frac{10478715}{71251264} a^{6} - \frac{396806779}{926266432} a^{4} + \frac{51832197}{132323776} a^{2} + \frac{371529}{1486784}$, $\frac{1}{1852532864} a^{15} - \frac{1}{1852532864} a^{14} + \frac{5859}{264647552} a^{13} - \frac{5859}{264647552} a^{12} + \frac{1052581}{264647552} a^{11} - \frac{1052581}{264647552} a^{10} + \frac{36076791}{1852532864} a^{9} - \frac{36076791}{1852532864} a^{8} + \frac{60772549}{142502528} a^{7} - \frac{60772549}{142502528} a^{6} - \frac{396806779}{1852532864} a^{5} + \frac{396806779}{1852532864} a^{4} + \frac{51832197}{264647552} a^{3} - \frac{51832197}{264647552} a^{2} + \frac{371529}{2973568} a - \frac{371529}{2973568}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $7$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( \frac{177195}{926266432} a^{14} - \frac{1216745}{926266432} a^{12} + \frac{5033937}{926266432} a^{10} - \frac{16410435}{926266432} a^{8} + \frac{2985943}{71251264} a^{6} - \frac{149854457}{926266432} a^{4} + \frac{168965169}{926266432} a^{2} + \frac{13274773}{10407488} \) (order $8$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 121085.745568 \)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

16T799:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 512
The 62 conjugacy class representatives for t16n799 are not computed
Character table for t16n799 is not computed

Intermediate fields

\(\Q(\sqrt{-1}) \), \(\Q(\sqrt{2}) \), \(\Q(\sqrt{-2}) \), 4.0.1088.2, 4.4.4352.1, \(\Q(\zeta_{8})\), 8.0.18939904.2

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 16 siblings: data not computed
Degree 32 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/7.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{4}$ R ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{4}$ ${\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/53.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$2.8.24.34$x^{8} + 32 x^{4} + 144$$8$$1$$24$$Q_8:C_2$$[2, 3, 4]^{2}$
2.8.18.53$x^{8} + 2 x^{6} + 4 x^{3} + 2$$8$$1$$18$$D_4\times C_2$$[2, 2, 3]^{2}$
$17$17.2.0.1$x^{2} - x + 3$$1$$2$$0$$C_2$$[\ ]^{2}$
17.2.0.1$x^{2} - x + 3$$1$$2$$0$$C_2$$[\ ]^{2}$
17.2.0.1$x^{2} - x + 3$$1$$2$$0$$C_2$$[\ ]^{2}$
17.2.0.1$x^{2} - x + 3$$1$$2$$0$$C_2$$[\ ]^{2}$
17.4.2.1$x^{4} + 85 x^{2} + 2601$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
17.4.2.1$x^{4} + 85 x^{2} + 2601$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
89Data not computed