Normalized defining polynomial
\( x^{16} - 4 x^{14} + 22 x^{12} - 52 x^{10} + 162 x^{8} - 564 x^{6} - 282 x^{4} + 5340 x^{2} + 7921 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(2909614931061678014464=2^{42}\cdot 17^{4}\cdot 89^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $21.95$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 17, 89$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8} - \frac{1}{2}$, $\frac{1}{2} a^{9} - \frac{1}{2} a$, $\frac{1}{28} a^{10} - \frac{1}{4} a^{8} - \frac{3}{7} a^{4} + \frac{9}{28} a^{2} + \frac{9}{28}$, $\frac{1}{56} a^{11} - \frac{1}{56} a^{10} + \frac{1}{8} a^{9} - \frac{1}{8} a^{8} + \frac{2}{7} a^{5} - \frac{2}{7} a^{4} + \frac{9}{56} a^{3} - \frac{9}{56} a^{2} + \frac{23}{56} a - \frac{23}{56}$, $\frac{1}{9968} a^{12} + \frac{37}{4984} a^{10} - \frac{253}{1424} a^{8} - \frac{104}{623} a^{6} + \frac{577}{9968} a^{4} + \frac{1573}{4984} a^{2} + \frac{45}{112}$, $\frac{1}{19936} a^{13} - \frac{1}{19936} a^{12} + \frac{37}{9968} a^{11} - \frac{37}{9968} a^{10} - \frac{253}{2848} a^{9} + \frac{253}{2848} a^{8} + \frac{519}{1246} a^{7} - \frac{519}{1246} a^{6} - \frac{9391}{19936} a^{5} + \frac{9391}{19936} a^{4} + \frac{1573}{9968} a^{3} - \frac{1573}{9968} a^{2} - \frac{67}{224} a + \frac{67}{224}$, $\frac{1}{926266432} a^{14} + \frac{5859}{132323776} a^{12} + \frac{1052581}{132323776} a^{10} + \frac{36076791}{926266432} a^{8} - \frac{10478715}{71251264} a^{6} - \frac{396806779}{926266432} a^{4} + \frac{51832197}{132323776} a^{2} + \frac{371529}{1486784}$, $\frac{1}{1852532864} a^{15} - \frac{1}{1852532864} a^{14} + \frac{5859}{264647552} a^{13} - \frac{5859}{264647552} a^{12} + \frac{1052581}{264647552} a^{11} - \frac{1052581}{264647552} a^{10} + \frac{36076791}{1852532864} a^{9} - \frac{36076791}{1852532864} a^{8} + \frac{60772549}{142502528} a^{7} - \frac{60772549}{142502528} a^{6} - \frac{396806779}{1852532864} a^{5} + \frac{396806779}{1852532864} a^{4} + \frac{51832197}{264647552} a^{3} - \frac{51832197}{264647552} a^{2} + \frac{371529}{2973568} a - \frac{371529}{2973568}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{177195}{926266432} a^{14} - \frac{1216745}{926266432} a^{12} + \frac{5033937}{926266432} a^{10} - \frac{16410435}{926266432} a^{8} + \frac{2985943}{71251264} a^{6} - \frac{149854457}{926266432} a^{4} + \frac{168965169}{926266432} a^{2} + \frac{13274773}{10407488} \) (order $8$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 121085.745568 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 512 |
| The 62 conjugacy class representatives for t16n799 are not computed |
| Character table for t16n799 is not computed |
Intermediate fields
| \(\Q(\sqrt{-1}) \), \(\Q(\sqrt{2}) \), \(\Q(\sqrt{-2}) \), 4.0.1088.2, 4.4.4352.1, \(\Q(\zeta_{8})\), 8.0.18939904.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{4}$ | R | ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.24.34 | $x^{8} + 32 x^{4} + 144$ | $8$ | $1$ | $24$ | $Q_8:C_2$ | $[2, 3, 4]^{2}$ |
| 2.8.18.53 | $x^{8} + 2 x^{6} + 4 x^{3} + 2$ | $8$ | $1$ | $18$ | $D_4\times C_2$ | $[2, 2, 3]^{2}$ | |
| $17$ | 17.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 17.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 17.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 17.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 17.4.2.1 | $x^{4} + 85 x^{2} + 2601$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 17.4.2.1 | $x^{4} + 85 x^{2} + 2601$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 89 | Data not computed | ||||||