Normalized defining polynomial
\( x^{16} + 66 x^{14} + 1513 x^{12} + 16238 x^{10} + 90424 x^{8} + 267118 x^{6} + 403493 x^{4} + 276026 x^{2} + 57121 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(2902974096966413457817600000000=2^{24}\cdot 5^{8}\cdot 29^{8}\cdot 941^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $80.15$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 29, 941$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2} a^{6} - \frac{1}{2}$, $\frac{1}{2} a^{7} - \frac{1}{2} a$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{2}$, $\frac{1}{4} a^{9} - \frac{1}{4} a^{6} - \frac{1}{2} a^{4} + \frac{1}{4} a^{3} - \frac{1}{2} a - \frac{1}{4}$, $\frac{1}{20} a^{10} - \frac{1}{4} a^{7} - \frac{1}{10} a^{6} - \frac{1}{2} a^{5} - \frac{3}{20} a^{4} + \frac{1}{10} a^{2} - \frac{1}{4} a + \frac{1}{10}$, $\frac{1}{20} a^{11} - \frac{1}{4} a^{8} - \frac{1}{10} a^{7} - \frac{3}{20} a^{5} + \frac{1}{10} a^{3} - \frac{1}{4} a^{2} + \frac{1}{10} a - \frac{1}{2}$, $\frac{1}{40} a^{12} + \frac{1}{5} a^{8} + \frac{1}{20} a^{6} - \frac{1}{5} a^{4} + \frac{3}{10} a^{2} - \frac{3}{8}$, $\frac{1}{40} a^{13} - \frac{1}{20} a^{9} + \frac{1}{20} a^{7} - \frac{1}{4} a^{6} - \frac{1}{5} a^{5} - \frac{1}{2} a^{4} + \frac{1}{20} a^{3} + \frac{1}{8} a - \frac{1}{4}$, $\frac{1}{916653974000} a^{14} + \frac{1014727587}{916653974000} a^{12} + \frac{405553497}{45832698700} a^{10} - \frac{24764943811}{458326987000} a^{8} + \frac{3356430081}{458326987000} a^{6} - \frac{9679261677}{22916349350} a^{4} + \frac{274517059813}{916653974000} a^{2} + \frac{140244875599}{916653974000}$, $\frac{1}{438160599572000} a^{15} - \frac{1}{1833307948000} a^{14} - \frac{273981464613}{438160599572000} a^{13} - \frac{1014727587}{1833307948000} a^{12} + \frac{426649651407}{21908029978600} a^{11} - \frac{405553497}{91665397400} a^{10} - \frac{437259232111}{219080299786000} a^{9} + \frac{24764943811}{916653974000} a^{8} - \frac{47066825134819}{219080299786000} a^{7} + \frac{225807063419}{916653974000} a^{6} - \frac{388688482451}{5477007494650} a^{5} + \frac{9679261677}{45832698700} a^{4} + \frac{8982729812813}{438160599572000} a^{3} + \frac{642136914187}{1833307948000} a^{2} + \frac{83189094919999}{438160599572000} a + \frac{318082111401}{1833307948000}$
Class group and class number
$C_{2}\times C_{2}\times C_{76}$, which has order $304$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 4361119.0122 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 2048 |
| The 74 conjugacy class representatives for t16n1439 are not computed |
| Character table for t16n1439 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), \(\Q(\sqrt{29}) \), \(\Q(\sqrt{145}) \), \(\Q(\sqrt{5}, \sqrt{29})\), 8.8.106488227360000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.8.0.1}{8} }{,}\,{\href{/LocalNumberField/3.4.0.1}{4} }{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }^{2}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{4}$ | R | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.12.19 | $x^{8} + 12 x^{4} + 80$ | $4$ | $2$ | $12$ | $(C_8:C_2):C_2$ | $[2, 2, 2]^{4}$ |
| 2.8.12.20 | $x^{8} + 8 x^{6} + 12 x^{4} + 80$ | $4$ | $2$ | $12$ | $C_2^3: C_4$ | $[2, 2, 2]^{4}$ | |
| $5$ | 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $29$ | 29.2.1.1 | $x^{2} - 29$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 29.2.1.1 | $x^{2} - 29$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 29.4.2.1 | $x^{4} + 145 x^{2} + 7569$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 29.8.4.1 | $x^{8} + 31958 x^{4} - 24389 x^{2} + 255328441$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 941 | Data not computed | ||||||