Normalized defining polynomial
\( x^{16} + 3092 x^{14} + 3763147 x^{12} + 2296419422 x^{10} + 744702238048 x^{8} + 127016546026864 x^{6} + 10768253589679158 x^{4} + 388439643284578428 x^{2} + 3207580110181323556 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(288604193782091750893321301214124833643876581376=2^{46}\cdot 239^{4}\cdot 257^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $925.27$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 239, 257$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{1434} a^{10} - \frac{493}{1434} a^{8} - \frac{193}{717} a^{6} - \frac{101}{239} a^{4} + \frac{72}{239} a^{2} - \frac{1}{3}$, $\frac{1}{1434} a^{11} - \frac{493}{1434} a^{9} - \frac{193}{717} a^{7} - \frac{101}{239} a^{5} + \frac{72}{239} a^{3} - \frac{1}{3} a$, $\frac{1}{1849692222} a^{12} - \frac{8333}{264241746} a^{10} - \frac{115098530}{924846111} a^{8} - \frac{14343410}{924846111} a^{6} - \frac{19141568}{44040291} a^{4} + \frac{2425}{15057} a^{2} + \frac{1}{63}$, $\frac{1}{1849692222} a^{13} - \frac{8333}{264241746} a^{11} - \frac{115098530}{924846111} a^{9} - \frac{14343410}{924846111} a^{7} - \frac{19141568}{44040291} a^{5} + \frac{2425}{15057} a^{3} + \frac{1}{63} a$, $\frac{1}{81144833946025990416380956111510031876206459093908} a^{14} - \frac{636249644161140402620176620191659669625}{9016092660669554490708995123501114652911828788212} a^{12} - \frac{1847820469316817486706207969184385392999729653}{40572416973012995208190478055755015938103229546954} a^{10} - \frac{1}{2} a^{9} - \frac{1491428960219537114063844127385854034541395698357}{13524138991004331736063492685251671979367743182318} a^{8} - \frac{5713233187329944186186700415539669975255985281409}{40572416973012995208190478055755015938103229546954} a^{6} + \frac{73189504559821357030686388576913987931277764437}{169759066832690356519625431195627681749385897686} a^{4} - \frac{7933414544732981678689889903198650958558}{20625151941563330538055708044075531256023} a^{2} + \frac{440478825819403250970057820161317325356}{5781946360187209816107667108590211691019}$, $\frac{1}{4949834870707585415399238322802111944448594004728388} a^{15} + \frac{28609997553399561101077864415851950788651}{549981652300842823933248702533567993827621556080932} a^{13} - \frac{415013404815542158544458702845291041567876269952}{1237458717676896353849809580700527986112148501182097} a^{11} + \frac{23293422148926887643204282459618916716182322394528}{58926605603661731135705218128596570767245166722957} a^{9} - \frac{1}{2} a^{8} + \frac{753521767639358634310026653329417032383500431134159}{2474917435353792707699619161401055972224297002364194} a^{7} + \frac{1201646656286907724607388959106725700672700256957}{10355303076794111747697151302933288586712539758846} a^{5} - \frac{518819948620663409218363864748290127603315}{1258134268435363162821398190688607406617403} a^{3} + \frac{85793020333344881488749905613635870859446}{352698727971419798782567693624002913152159} a$
Class group and class number
$C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{6}\times C_{149148972}$, which has order $57273205248$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 9996199.50284 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 512 |
| The 32 conjugacy class representatives for t16n875 |
| Character table for t16n875 is not computed |
Intermediate fields
| \(\Q(\sqrt{257}) \), 4.4.528392.1, 8.8.285898860199936.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }{,}\,{\href{/LocalNumberField/11.4.0.1}{4} }{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.4.9.1 | $x^{4} + 6 x^{2} + 2$ | $4$ | $1$ | $9$ | $D_{4}$ | $[2, 3, 7/2]$ |
| 2.4.6.2 | $x^{4} - 2 x^{2} + 4$ | $2$ | $2$ | $6$ | $C_2^2$ | $[3]^{2}$ | |
| 2.8.31.31 | $x^{8} + 4 x^{4} + 34$ | $8$ | $1$ | $31$ | $(C_8:C_2):C_2$ | $[2, 3, 7/2, 4, 5]$ | |
| 239 | Data not computed | ||||||
| 257 | Data not computed | ||||||