Normalized defining polynomial
\( x^{16} - 8 x^{15} + 32 x^{14} - 60 x^{13} - 25 x^{12} + 384 x^{11} - 782 x^{10} + 404 x^{9} + 1454 x^{8} - 3616 x^{7} + 4320 x^{6} - 2128 x^{5} - 1220 x^{4} + 2368 x^{3} - 184 x^{2} - 368 x + 104 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(287742083309962730143744=2^{34}\cdot 7^{4}\cdot 17^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $29.25$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 7, 17$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{4} a^{6} - \frac{1}{4} a^{4} - \frac{1}{2}$, $\frac{1}{4} a^{7} - \frac{1}{4} a^{5} - \frac{1}{2} a$, $\frac{1}{4} a^{8} - \frac{1}{4} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{8} a^{9} - \frac{1}{8} a^{7} + \frac{1}{4} a^{3}$, $\frac{1}{16} a^{10} + \frac{1}{16} a^{8} + \frac{1}{4} a^{2} + \frac{1}{4}$, $\frac{1}{16} a^{11} - \frac{1}{16} a^{9} - \frac{1}{8} a^{7} + \frac{1}{4} a^{5} - \frac{1}{4} a$, $\frac{1}{16} a^{12} - \frac{1}{16} a^{8} + \frac{1}{4} a^{4} - \frac{1}{4}$, $\frac{1}{32} a^{13} - \frac{1}{32} a^{9} - \frac{1}{8} a^{8} - \frac{1}{8} a^{6} + \frac{1}{8} a^{5} + \frac{1}{4} a^{4} - \frac{1}{4} a^{2} - \frac{1}{8} a - \frac{1}{2}$, $\frac{1}{1312} a^{14} + \frac{15}{1312} a^{13} + \frac{1}{41} a^{12} - \frac{15}{656} a^{11} - \frac{29}{1312} a^{10} + \frac{63}{1312} a^{9} - \frac{19}{164} a^{8} + \frac{15}{328} a^{7} + \frac{11}{164} a^{6} + \frac{85}{328} a^{5} - \frac{43}{164} a^{4} + \frac{13}{41} a^{3} - \frac{59}{328} a^{2} - \frac{73}{328} a + \frac{2}{41}$, $\frac{1}{7312742418658144} a^{15} - \frac{106974969137}{3656371209329072} a^{14} - \frac{17092296324689}{7312742418658144} a^{13} + \frac{66745645757169}{3656371209329072} a^{12} - \frac{114786304538485}{7312742418658144} a^{11} - \frac{18071268701103}{3656371209329072} a^{10} - \frac{232271986360963}{7312742418658144} a^{9} + \frac{446156639246681}{3656371209329072} a^{8} + \frac{218926547471215}{1828185604664536} a^{7} + \frac{208492608930507}{1828185604664536} a^{6} + \frac{515905217685513}{1828185604664536} a^{5} - \frac{58625083977750}{228523200583067} a^{4} - \frac{15478855126503}{96220294982344} a^{3} - \frac{71634689736127}{457046401166134} a^{2} + \frac{246968816541929}{1828185604664536} a - \frac{30105311969931}{70314830948636}$
Class group and class number
$C_{2}\times C_{6}$, which has order $12$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{688386944971}{89179785593392} a^{15} - \frac{5447779220025}{89179785593392} a^{14} + \frac{10815883567867}{44589892796696} a^{13} - \frac{2507378648197}{5573736599587} a^{12} - \frac{17635421615445}{89179785593392} a^{11} + \frac{255858035471339}{89179785593392} a^{10} - \frac{32125532444367}{5573736599587} a^{9} + \frac{133081688642957}{44589892796696} a^{8} + \frac{234007567635597}{22294946398348} a^{7} - \frac{582545102163125}{22294946398348} a^{6} + \frac{179357147760931}{5573736599587} a^{5} - \frac{199019863592921}{11147473199174} a^{4} - \frac{5939501373711}{1173418231492} a^{3} + \frac{288973287660795}{22294946398348} a^{2} + \frac{2994766627261}{5573736599587} a - \frac{902969738147}{857497938398} \) (order $4$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 325927.116113 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times D_4:D_4$ (as 16T265):
| A solvable group of order 128 |
| The 32 conjugacy class representatives for $C_2\times D_4:D_4$ |
| Character table for $C_2\times D_4:D_4$ is not computed |
Intermediate fields
| \(\Q(\sqrt{17}) \), \(\Q(\sqrt{-1}) \), \(\Q(\sqrt{-17}) \), 4.4.9248.1, 4.0.2312.1, \(\Q(i, \sqrt{17})\), 8.8.536415961088.2, 8.0.134103990272.4, 8.0.342102016.5 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{8}$ | R | ${\href{/LocalNumberField/19.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.4.8.2 | $x^{4} + 6 x^{2} + 1$ | $4$ | $1$ | $8$ | $C_2^2$ | $[2, 3]$ |
| 2.4.9.1 | $x^{4} + 6 x^{2} + 2$ | $4$ | $1$ | $9$ | $D_{4}$ | $[2, 3, 7/2]$ | |
| 2.4.8.2 | $x^{4} + 6 x^{2} + 1$ | $4$ | $1$ | $8$ | $C_2^2$ | $[2, 3]$ | |
| 2.4.9.1 | $x^{4} + 6 x^{2} + 2$ | $4$ | $1$ | $9$ | $D_{4}$ | $[2, 3, 7/2]$ | |
| $7$ | 7.4.2.2 | $x^{4} - 7 x^{2} + 147$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ |
| 7.4.0.1 | $x^{4} + x^{2} - 3 x + 5$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 7.4.0.1 | $x^{4} + x^{2} - 3 x + 5$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 7.4.2.2 | $x^{4} - 7 x^{2} + 147$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| $17$ | 17.4.2.1 | $x^{4} + 85 x^{2} + 2601$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 17.4.2.1 | $x^{4} + 85 x^{2} + 2601$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 17.4.2.1 | $x^{4} + 85 x^{2} + 2601$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 17.4.2.1 | $x^{4} + 85 x^{2} + 2601$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |