Properties

Label 16.0.287365367070720000.1
Degree $16$
Signature $[0, 8]$
Discriminant $2^{24}\cdot 3^{8}\cdot 5^{4}\cdot 4177$
Root discriminant $12.34$
Ramified primes $2, 3, 5, 4177$
Class number $1$
Class group Trivial
Galois group 16T1577

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, -6, 11, -4, -5, -4, 27, -8, -42, 24, 35, -32, -5, 10, 2, -4, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^16 - 4*x^15 + 2*x^14 + 10*x^13 - 5*x^12 - 32*x^11 + 35*x^10 + 24*x^9 - 42*x^8 - 8*x^7 + 27*x^6 - 4*x^5 - 5*x^4 - 4*x^3 + 11*x^2 - 6*x + 1)
 
gp: K = bnfinit(x^16 - 4*x^15 + 2*x^14 + 10*x^13 - 5*x^12 - 32*x^11 + 35*x^10 + 24*x^9 - 42*x^8 - 8*x^7 + 27*x^6 - 4*x^5 - 5*x^4 - 4*x^3 + 11*x^2 - 6*x + 1, 1)
 

Normalized defining polynomial

\( x^{16} - 4 x^{15} + 2 x^{14} + 10 x^{13} - 5 x^{12} - 32 x^{11} + 35 x^{10} + 24 x^{9} - 42 x^{8} - 8 x^{7} + 27 x^{6} - 4 x^{5} - 5 x^{4} - 4 x^{3} + 11 x^{2} - 6 x + 1 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $16$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 8]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(287365367070720000=2^{24}\cdot 3^{8}\cdot 5^{4}\cdot 4177\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $12.34$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 3, 5, 4177$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{10} - \frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2}$, $\frac{1}{14} a^{13} - \frac{1}{7} a^{12} + \frac{3}{14} a^{11} - \frac{3}{7} a^{10} + \frac{1}{14} a^{9} + \frac{1}{7} a^{8} - \frac{3}{14} a^{7} + \frac{1}{7} a^{6} - \frac{2}{7} a^{4} + \frac{1}{7} a^{3} - \frac{3}{7} a^{2} - \frac{1}{14} a - \frac{2}{7}$, $\frac{1}{14} a^{14} - \frac{1}{14} a^{12} + \frac{3}{14} a^{10} + \frac{2}{7} a^{9} + \frac{1}{14} a^{8} - \frac{2}{7} a^{7} + \frac{2}{7} a^{6} - \frac{2}{7} a^{5} - \frac{3}{7} a^{4} - \frac{1}{7} a^{3} + \frac{1}{14} a^{2} - \frac{3}{7} a + \frac{3}{7}$, $\frac{1}{2702} a^{15} + \frac{4}{1351} a^{14} - \frac{95}{2702} a^{13} + \frac{607}{2702} a^{12} - \frac{55}{2702} a^{11} - \frac{885}{2702} a^{10} - \frac{1321}{2702} a^{9} + \frac{1349}{2702} a^{8} - \frac{419}{1351} a^{7} - \frac{993}{2702} a^{6} + \frac{135}{1351} a^{5} + \frac{653}{1351} a^{4} - \frac{133}{386} a^{3} + \frac{395}{1351} a^{2} - \frac{562}{1351} a - \frac{563}{2702}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $7$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( \frac{4960}{1351} a^{15} - \frac{18027}{1351} a^{14} + \frac{3194}{1351} a^{13} + \frac{51258}{1351} a^{12} - \frac{6074}{1351} a^{11} - \frac{162321}{1351} a^{10} + \frac{114060}{1351} a^{9} + \frac{165131}{1351} a^{8} - \frac{150186}{1351} a^{7} - \frac{98929}{1351} a^{6} + \frac{100140}{1351} a^{5} + \frac{19594}{1351} a^{4} - \frac{19342}{1351} a^{3} - \frac{27292}{1351} a^{2} + \frac{43962}{1351} a - \frac{11929}{1351} \) (order $6$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 321.150081014 \)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

16T1577:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 4096
The 88 conjugacy class representatives for t16n1577 are not computed
Character table for t16n1577 is not computed

Intermediate fields

\(\Q(\sqrt{2}) \), \(\Q(\sqrt{-3}) \), \(\Q(\sqrt{-6}) \), \(\Q(\sqrt{2}, \sqrt{-3})\), 8.0.8294400.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 16 siblings: data not computed
Degree 32 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R R R ${\href{/LocalNumberField/7.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/11.8.0.1}{8} }{,}\,{\href{/LocalNumberField/11.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/17.8.0.1}{8} }{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/23.8.0.1}{8} }{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/31.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/47.8.0.1}{8} }{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/59.8.0.1}{8} }{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$2.8.12.1$x^{8} + 6 x^{6} + 8 x^{5} + 16$$2$$4$$12$$C_4\times C_2$$[3]^{4}$
2.8.12.1$x^{8} + 6 x^{6} + 8 x^{5} + 16$$2$$4$$12$$C_4\times C_2$$[3]^{4}$
3Data not computed
$5$5.8.4.1$x^{8} + 10 x^{6} + 125 x^{4} + 2500$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
5.8.0.1$x^{8} + x^{2} - 2 x + 3$$1$$8$$0$$C_8$$[\ ]^{8}$
4177Data not computed