Normalized defining polynomial
\( x^{16} - 5 x^{15} + 4 x^{14} + 18 x^{13} - 40 x^{12} + 43 x^{11} + 87 x^{10} + 68 x^{9} + 232 x^{8} - 68 x^{7} + 87 x^{6} - 43 x^{5} - 40 x^{4} - 18 x^{3} + 4 x^{2} + 5 x + 1 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(2873370121635406640625=3^{12}\cdot 5^{8}\cdot 7^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $21.94$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 5, 7$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $\frac{1}{2} a^{5} - \frac{1}{2}$, $\frac{1}{2} a^{6} - \frac{1}{2} a$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{4}$, $\frac{1}{20} a^{10} - \frac{1}{10} a^{9} - \frac{1}{10} a^{8} + \frac{1}{10} a^{7} - \frac{1}{5} a^{6} + \frac{1}{5} a^{5} - \frac{3}{10} a^{4} + \frac{1}{10} a^{3} + \frac{1}{10} a^{2} + \frac{2}{5} a - \frac{1}{20}$, $\frac{1}{20} a^{11} + \frac{1}{5} a^{9} - \frac{1}{10} a^{8} - \frac{1}{5} a^{6} + \frac{1}{10} a^{5} + \frac{3}{10} a^{3} - \frac{2}{5} a^{2} - \frac{1}{4} a - \frac{1}{10}$, $\frac{1}{100} a^{12} + \frac{1}{50} a^{11} - \frac{1}{100} a^{10} + \frac{3}{50} a^{9} - \frac{6}{25} a^{8} + \frac{3}{50} a^{7} - \frac{3}{50} a^{6} + \frac{1}{25} a^{5} - \frac{7}{50} a^{4} + \frac{11}{25} a^{3} + \frac{9}{100} a^{2} + \frac{7}{25} a + \frac{41}{100}$, $\frac{1}{500} a^{13} - \frac{1}{500} a^{12} - \frac{3}{125} a^{11} + \frac{9}{500} a^{10} - \frac{28}{125} a^{9} + \frac{22}{125} a^{8} - \frac{31}{125} a^{7} - \frac{27}{125} a^{6} + \frac{16}{125} a^{5} + \frac{9}{125} a^{4} + \frac{147}{500} a^{3} - \frac{59}{500} a^{2} - \frac{42}{125} a + \frac{87}{500}$, $\frac{1}{500} a^{14} + \frac{1}{250} a^{12} + \frac{1}{250} a^{11} + \frac{7}{500} a^{10} - \frac{17}{250} a^{9} - \frac{24}{125} a^{8} + \frac{27}{125} a^{7} - \frac{17}{250} a^{6} + \frac{11}{50} a^{5} - \frac{27}{500} a^{4} - \frac{38}{125} a^{3} - \frac{71}{250} a^{2} - \frac{9}{125} a + \frac{127}{500}$, $\frac{1}{5000} a^{15} - \frac{1}{2500} a^{14} - \frac{1}{2500} a^{13} + \frac{3}{1250} a^{12} - \frac{13}{625} a^{11} + \frac{31}{5000} a^{10} + \frac{39}{250} a^{9} + \frac{77}{1250} a^{8} - \frac{118}{625} a^{7} - \frac{813}{5000} a^{5} + \frac{59}{2500} a^{4} + \frac{607}{2500} a^{3} + \frac{181}{1250} a^{2} + \frac{97}{625} a - \frac{1467}{5000}$
Class group and class number
$C_{4}$, which has order $4$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{8}{125} a^{15} + \frac{17}{125} a^{14} - \frac{967}{500} a^{13} + \frac{1311}{500} a^{12} + \frac{698}{125} a^{11} - \frac{6871}{500} a^{10} + \frac{5859}{250} a^{9} + \frac{2253}{50} a^{8} + \frac{2803}{50} a^{7} + \frac{29413}{250} a^{6} + \frac{913}{125} a^{5} + \frac{14857}{250} a^{4} - \frac{2567}{500} a^{3} - \frac{5509}{500} a^{2} - \frac{2193}{250} a - \frac{681}{500} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 30068.4245215 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^2\wr C_2$ (as 16T46):
| A solvable group of order 32 |
| The 14 conjugacy class representatives for $C_2^2\wr C_2$ |
| Character table for $C_2^2\wr C_2$ |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 8 siblings: | data not computed |
| Degree 16 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{4}$ | R | R | R | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.4.3.1 | $x^{4} + 3$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ |
| 3.4.3.1 | $x^{4} + 3$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ | |
| 3.8.6.2 | $x^{8} + 4 x^{7} + 14 x^{6} + 28 x^{5} + 43 x^{4} + 44 x^{3} + 110 x^{2} + 92 x + 22$ | $4$ | $2$ | $6$ | $D_4$ | $[\ ]_{4}^{2}$ | |
| $5$ | 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $7$ | 7.4.3.2 | $x^{4} - 7$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ |
| 7.4.3.2 | $x^{4} - 7$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ | |
| 7.8.6.2 | $x^{8} - 49 x^{4} + 3969$ | $4$ | $2$ | $6$ | $D_4$ | $[\ ]_{4}^{2}$ |