Normalized defining polynomial
\( x^{16} - 5 x^{15} - 97 x^{14} + 523 x^{13} + 10072 x^{12} - 18609 x^{11} - 823046 x^{10} + 2446813 x^{9} + 90584933 x^{8} + 185231148 x^{7} - 5102562617 x^{6} - 34254214176 x^{5} + 16288721013 x^{4} + 939964804413 x^{3} + 4836624820184 x^{2} + 15396026241748 x + 26985991018919 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(2866867967976420459213670979269882298249=67^{12}\cdot 89^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $292.47$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $67, 89$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{5} - \frac{1}{2}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{6} - \frac{1}{2} a$, $\frac{1}{134} a^{12} - \frac{5}{134} a^{11} - \frac{15}{67} a^{10} + \frac{27}{67} a^{9} + \frac{11}{67} a^{8} + \frac{17}{134} a^{7} + \frac{49}{134} a^{6} + \frac{20}{67} a^{5} + \frac{31}{67} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{134} a^{13} + \frac{6}{67} a^{11} - \frac{29}{134} a^{10} + \frac{12}{67} a^{9} - \frac{7}{134} a^{8} - \frac{25}{67} a^{6} + \frac{61}{134} a^{5} + \frac{21}{67} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2}$, $\frac{1}{268} a^{14} + \frac{31}{268} a^{11} + \frac{49}{268} a^{10} + \frac{15}{268} a^{9} - \frac{65}{134} a^{8} + \frac{7}{134} a^{7} + \frac{9}{268} a^{6} - \frac{103}{268} a^{5} - \frac{7}{268} a^{4} - \frac{1}{2} a^{3} + \frac{1}{4} a - \frac{1}{4}$, $\frac{1}{115736699512537931698871786448812115160628740405584644370553403546864224599072546934316} a^{15} - \frac{105463042451851234729727134882458124934860044845993328162610348092024981242915482217}{115736699512537931698871786448812115160628740405584644370553403546864224599072546934316} a^{14} - \frac{40456599253634965524687613666996173503284727507181149252601178276984020393627062171}{57868349756268965849435893224406057580314370202792322185276701773432112299536273467158} a^{13} - \frac{25195702058124954111220995888955565722487796317869839760402883788747510247909090511}{115736699512537931698871786448812115160628740405584644370553403546864224599072546934316} a^{12} + \frac{400381377719494385896110813869797175324630590224068077026624704461416435808378445765}{57868349756268965849435893224406057580314370202792322185276701773432112299536273467158} a^{11} + \frac{5572950556135331622548865976543405737602846548797453269043526986879771168361955905200}{28934174878134482924717946612203028790157185101396161092638350886716056149768136733579} a^{10} + \frac{13191152764914826880768113686904516566470281963267112386565114896831271387804040275311}{115736699512537931698871786448812115160628740405584644370553403546864224599072546934316} a^{9} - \frac{17106878664507963553969828003560368357512736568411538988439699125788570823822328681495}{57868349756268965849435893224406057580314370202792322185276701773432112299536273467158} a^{8} - \frac{14919679468920577827325771536652749044604215558742683646410655648864759254015839069155}{115736699512537931698871786448812115160628740405584644370553403546864224599072546934316} a^{7} - \frac{457977048182312840291863401387810764099869420134028496001458742355464225709489995866}{1258007603397151431509475939661001251745964569625920047506015255944176354337745075373} a^{6} + \frac{23871642389559066511370497928530998510468992719508159107484230598406255030964898168521}{57868349756268965849435893224406057580314370202792322185276701773432112299536273467158} a^{5} + \frac{4615916064624014352358782413770117198103628627814600864779261267046100268719617658953}{115736699512537931698871786448812115160628740405584644370553403546864224599072546934316} a^{4} + \frac{26394214800131247145686500831758689802195794313848640504969019231977491300358488660}{431853356390066909324148456898552668509808732856659120785647028159941136563703533337} a^{3} + \frac{809416855713388891763080612186242224295764989178313055958931023613636400324751709231}{1727413425560267637296593827594210674039234931426636483142588112639764546254814133348} a^{2} - \frac{387863498009951663225283998116898115473365041016646356592141695180268746991862115097}{863706712780133818648296913797105337019617465713318241571294056319882273127407066674} a - \frac{2990281678539995625602724833634935066971912268159796585263212327042012442574570553}{101612554444721625723329048682012392590543231260390381361328712508221443897342007844}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 10215687727400 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_4.D_4:C_4$ (as 16T260):
| A solvable group of order 128 |
| The 32 conjugacy class representatives for $C_4.D_4:C_4$ |
| Character table for $C_4.D_4:C_4$ is not computed |
Intermediate fields
| \(\Q(\sqrt{-67}) \), 4.0.399521.1, 8.0.14205915620249.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{4}$ | $16$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | $16$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{8}$ | $16$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }^{2}$ | $16$ | ${\href{/LocalNumberField/37.8.0.1}{8} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{4}$ | $16$ | $16$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{4}$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $67$ | 67.8.6.2 | $x^{8} + 1541 x^{4} + 646416$ | $4$ | $2$ | $6$ | $Q_8$ | $[\ ]_{4}^{2}$ |
| 67.8.6.2 | $x^{8} + 1541 x^{4} + 646416$ | $4$ | $2$ | $6$ | $Q_8$ | $[\ ]_{4}^{2}$ | |
| $89$ | 89.4.2.2 | $x^{4} - 89 x^{2} + 47526$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ |
| 89.4.0.1 | $x^{4} - x + 27$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 89.8.7.4 | $x^{8} - 64881$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ |