Normalized defining polynomial
\( x^{16} + 58 x^{14} + 1207 x^{12} + 11284 x^{10} + 52027 x^{8} + 116938 x^{6} + 112537 x^{4} + 35800 x^{2} + 2500 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(28654123680257493540299341824=2^{34}\cdot 3^{12}\cdot 11^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $60.06$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{3}$, $\frac{1}{12} a^{8} - \frac{1}{12} a^{6} + \frac{1}{4} a^{4} - \frac{1}{2} a^{3} - \frac{1}{12} a^{2} - \frac{1}{2} a - \frac{1}{6}$, $\frac{1}{12} a^{9} - \frac{1}{12} a^{7} - \frac{1}{4} a^{5} + \frac{5}{12} a^{3} - \frac{1}{6} a$, $\frac{1}{12} a^{10} + \frac{1}{6} a^{6} - \frac{1}{3} a^{4} - \frac{1}{2} a^{3} + \frac{1}{4} a^{2} - \frac{1}{2} a - \frac{1}{6}$, $\frac{1}{60} a^{11} + \frac{1}{30} a^{7} + \frac{2}{15} a^{5} - \frac{1}{2} a^{4} + \frac{1}{20} a^{3} - \frac{1}{2} a^{2} - \frac{13}{30} a$, $\frac{1}{120} a^{12} + \frac{1}{60} a^{8} + \frac{1}{15} a^{6} + \frac{11}{40} a^{4} - \frac{7}{15} a^{2} - \frac{1}{2}$, $\frac{1}{120} a^{13} + \frac{1}{60} a^{9} + \frac{1}{15} a^{7} - \frac{9}{40} a^{5} - \frac{1}{2} a^{4} + \frac{1}{30} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{10511917200} a^{14} + \frac{36365213}{10511917200} a^{12} - \frac{13764853}{1751986200} a^{10} - \frac{41104153}{5255958600} a^{8} + \frac{681512117}{10511917200} a^{6} - \frac{1492517149}{3503972400} a^{4} - \frac{1}{2} a^{3} + \frac{594483479}{1313989650} a^{2} - \frac{1}{2} a - \frac{10160053}{105119172}$, $\frac{1}{105119172000} a^{15} - \frac{1}{21023834400} a^{14} - \frac{226432717}{105119172000} a^{13} + \frac{51234097}{21023834400} a^{12} - \frac{13764853}{17519862000} a^{11} + \frac{13764853}{3503972400} a^{10} - \frac{741898633}{52559586000} a^{9} - \frac{309293087}{10511917200} a^{8} - \frac{5800836823}{105119172000} a^{7} - \frac{4360683137}{21023834400} a^{6} - \frac{1755315079}{35039724000} a^{5} + \frac{1580116459}{7007944800} a^{4} + \frac{1145167303}{26279793000} a^{3} + \frac{1745609927}{5255958600} a^{2} + \frac{11983879}{210238344} a + \frac{80239501}{210238344}$
Class group and class number
$C_{2}\times C_{4}\times C_{4}\times C_{8}$, which has order $256$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1040970.36274 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^4.C_2^3$ (as 16T373):
| A solvable group of order 128 |
| The 26 conjugacy class representatives for $C_2^4.C_2^3$ |
| Character table for $C_2^4.C_2^3$ is not computed |
Intermediate fields
| \(\Q(\sqrt{3}) \), \(\Q(\sqrt{11}) \), \(\Q(\sqrt{33}) \), 4.4.287496.1, \(\Q(\sqrt{3}, \sqrt{11})\), 4.4.1149984.1, 8.8.5289852801024.4, 8.0.427462852608.2, 8.0.3847165673472.16 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.4.6.9 | $x^{4} + 2 x^{3} + 6$ | $4$ | $1$ | $6$ | $D_{4}$ | $[2, 2]^{2}$ |
| 2.4.6.9 | $x^{4} + 2 x^{3} + 6$ | $4$ | $1$ | $6$ | $D_{4}$ | $[2, 2]^{2}$ | |
| 2.8.22.98 | $x^{8} + 24 x^{4} + 784$ | $8$ | $1$ | $22$ | $D_4\times C_2$ | $[2, 3, 7/2]^{2}$ | |
| $3$ | 3.8.6.2 | $x^{8} + 4 x^{7} + 14 x^{6} + 28 x^{5} + 43 x^{4} + 44 x^{3} + 110 x^{2} + 92 x + 22$ | $4$ | $2$ | $6$ | $D_4$ | $[\ ]_{4}^{2}$ |
| 3.8.6.2 | $x^{8} + 4 x^{7} + 14 x^{6} + 28 x^{5} + 43 x^{4} + 44 x^{3} + 110 x^{2} + 92 x + 22$ | $4$ | $2$ | $6$ | $D_4$ | $[\ ]_{4}^{2}$ | |
| $11$ | 11.4.3.2 | $x^{4} - 11$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ |
| 11.4.3.2 | $x^{4} - 11$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ | |
| 11.8.6.2 | $x^{8} - 781 x^{4} + 290521$ | $4$ | $2$ | $6$ | $D_4$ | $[\ ]_{4}^{2}$ |