Normalized defining polynomial
\( x^{16} - 4 x^{15} - 21 x^{14} + 2 x^{13} + 879 x^{12} + 716 x^{11} - 5620 x^{10} - 41278 x^{9} + 22417 x^{8} + 112522 x^{7} + 1007165 x^{6} - 743188 x^{5} - 438001 x^{4} - 10586538 x^{3} + 60329180 x^{2} - 91102296 x + 50324192 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(28643813255402702732772283462081=11^{4}\cdot 89^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $92.48$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $11, 89$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{7} - \frac{1}{2} a$, $\frac{1}{4} a^{8} - \frac{1}{4} a^{2}$, $\frac{1}{8} a^{9} - \frac{1}{8} a^{8} - \frac{1}{4} a^{7} - \frac{1}{8} a^{3} + \frac{1}{8} a^{2} + \frac{1}{4} a$, $\frac{1}{8} a^{10} - \frac{1}{8} a^{8} - \frac{1}{4} a^{7} - \frac{1}{8} a^{4} + \frac{1}{8} a^{2} + \frac{1}{4} a$, $\frac{1}{32} a^{11} - \frac{1}{32} a^{9} - \frac{1}{8} a^{8} - \frac{1}{4} a^{7} - \frac{1}{8} a^{6} + \frac{7}{32} a^{5} - \frac{1}{8} a^{4} - \frac{11}{32} a^{3} + \frac{3}{8} a^{2} - \frac{1}{8} a - \frac{1}{2}$, $\frac{1}{64} a^{12} - \frac{1}{64} a^{11} - \frac{1}{64} a^{10} - \frac{3}{64} a^{9} - \frac{1}{16} a^{8} + \frac{1}{16} a^{7} - \frac{5}{64} a^{6} - \frac{11}{64} a^{5} + \frac{9}{64} a^{4} + \frac{7}{64} a^{3} + \frac{1}{4} a^{2} - \frac{7}{16} a + \frac{1}{4}$, $\frac{1}{256} a^{13} - \frac{1}{128} a^{11} + \frac{3}{64} a^{10} + \frac{9}{256} a^{9} - \frac{1}{8} a^{8} - \frac{1}{256} a^{7} + \frac{1}{16} a^{6} + \frac{31}{128} a^{5} - \frac{1}{8} a^{4} - \frac{89}{256} a^{3} - \frac{27}{64} a^{2} + \frac{5}{64} a - \frac{7}{16}$, $\frac{1}{4352} a^{14} - \frac{1}{1088} a^{13} - \frac{9}{2176} a^{12} - \frac{11}{1088} a^{11} + \frac{9}{4352} a^{10} - \frac{41}{1088} a^{9} + \frac{15}{256} a^{8} + \frac{21}{1088} a^{7} - \frac{377}{2176} a^{6} + \frac{93}{544} a^{5} + \frac{951}{4352} a^{4} + \frac{107}{544} a^{3} + \frac{353}{1088} a^{2} - \frac{15}{68} a + \frac{15}{68}$, $\frac{1}{40923134491728353642745067655450585495775232} a^{15} - \frac{357593984246815276205437995507357108211}{40923134491728353642745067655450585495775232} a^{14} + \frac{5829112205606415645418055698673174626337}{5115391811466044205343133456931323186971904} a^{13} - \frac{28077458062811852694797673618281518502123}{20461567245864176821372533827725292747887616} a^{12} + \frac{565055968901264979357618839021799139878265}{40923134491728353642745067655450585495775232} a^{11} - \frac{378973938687930481734091195038574611537195}{40923134491728353642745067655450585495775232} a^{10} + \frac{137859811660792791749803655404197968125233}{40923134491728353642745067655450585495775232} a^{9} - \frac{2395376806401506728051872522360059836237725}{40923134491728353642745067655450585495775232} a^{8} - \frac{132120774908066400517787644458088761493383}{10230783622932088410686266913862646373943808} a^{7} + \frac{3806210000141456763104756274229285163890695}{20461567245864176821372533827725292747887616} a^{6} + \frac{4141943385920340108316410987248201684862955}{40923134491728353642745067655450585495775232} a^{5} - \frac{655206120562637161381231023091990750803961}{40923134491728353642745067655450585495775232} a^{4} - \frac{8817060879140581524124952436907488083359229}{20461567245864176821372533827725292747887616} a^{3} - \frac{1598087058837446748141243284766810733529897}{10230783622932088410686266913862646373943808} a^{2} - \frac{826159206771068750689655731362527208966769}{5115391811466044205343133456931323186971904} a + \frac{166536792494355444767606913287456639371}{4518897359952335870444464184568306702272}$
Class group and class number
$C_{226}$, which has order $226$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1882188039.33 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^2:C_8$ (as 16T24):
| A solvable group of order 32 |
| The 20 conjugacy class representatives for $C_2^2 : C_8$ |
| Character table for $C_2^2 : C_8$ |
Intermediate fields
| \(\Q(\sqrt{89}) \), 4.4.704969.1, 4.2.87131.1, 4.2.7754659.1, 8.0.44231334895529.1, 8.4.5351991522359009.1, 8.4.60134736206281.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 16 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/2.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $11$ | 11.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 11.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 11.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 11.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 11.4.2.1 | $x^{4} + 143 x^{2} + 5929$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 11.4.2.1 | $x^{4} + 143 x^{2} + 5929$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $89$ | 89.8.7.3 | $x^{8} - 7209$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ |
| 89.8.7.3 | $x^{8} - 7209$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ |