Normalized defining polynomial
\( x^{16} - 4 x^{15} + 17 x^{14} - 42 x^{13} + 507 x^{12} - 1058 x^{11} + 7486 x^{10} - 15529 x^{9} + 51943 x^{8} - 103927 x^{7} + 1100675 x^{6} - 1990836 x^{5} + 15449301 x^{4} - 21086696 x^{3} + 68885217 x^{2} - 46191701 x + 90915613 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(286218361857094751614277009933470801=17^{12}\cdot 53^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $164.45$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $17, 53$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3}$, $\frac{1}{2582976} a^{12} - \frac{1}{860992} a^{11} - \frac{6161}{1291488} a^{10} - \frac{108761}{1291488} a^{9} - \frac{99177}{430496} a^{8} - \frac{768137}{2582976} a^{7} + \frac{1096387}{2582976} a^{6} + \frac{3451}{80718} a^{5} + \frac{289457}{860992} a^{4} + \frac{130433}{860992} a^{3} + \frac{176785}{860992} a^{2} - \frac{440179}{2582976} a - \frac{498787}{2582976}$, $\frac{1}{2582976} a^{13} - \frac{1121}{234816} a^{11} - \frac{31811}{322872} a^{10} + \frac{3655}{215248} a^{9} + \frac{29653}{2582976} a^{8} - \frac{151003}{322872} a^{7} + \frac{816617}{2582976} a^{6} - \frac{30607}{860992} a^{5} + \frac{34453}{215248} a^{4} + \frac{3127}{19568} a^{3} - \frac{6391}{117408} a^{2} - \frac{131959}{645744} a + \frac{362205}{860992}$, $\frac{1}{2582976} a^{14} - \frac{291481}{2582976} a^{11} + \frac{248431}{1291488} a^{10} + \frac{62149}{860992} a^{9} + \frac{304379}{1291488} a^{8} + \frac{115377}{430496} a^{7} + \frac{39973}{645744} a^{6} - \frac{92353}{645744} a^{5} + \frac{17229}{78272} a^{4} + \frac{114517}{234816} a^{3} - \frac{815563}{2582976} a^{2} + \frac{35971}{1291488} a + \frac{74077}{234816}$, $\frac{1}{530401262967927876035929867836936384} a^{15} + \frac{1928840085341458023139225685}{530401262967927876035929867836936384} a^{14} + \frac{28842251923150636898919082849}{265200631483963938017964933918468192} a^{13} + \frac{401634995530632718488081483}{5525013155915915375374269456634754} a^{12} - \frac{7031230388932294593342073626053651}{33150078935495492252245616739808524} a^{11} + \frac{100271637046107110221189357445681731}{530401262967927876035929867836936384} a^{10} - \frac{10632832045843136874074106529796643}{176800420989309292011976622612312128} a^{9} + \frac{11403347327431906271463865968489467}{66300157870990984504491233479617048} a^{8} + \frac{62620607487926382986385615612994369}{530401262967927876035929867836936384} a^{7} - \frac{17981595992485995948527597589401825}{176800420989309292011976622612312128} a^{6} - \frac{59696635613665710115684856378332459}{176800420989309292011976622612312128} a^{5} + \frac{35751925462148950994863403715338987}{530401262967927876035929867836936384} a^{4} - \frac{2252051148106963599329291250859509}{16072765544482662910179692964755648} a^{3} + \frac{82969425769725857885205584735064227}{265200631483963938017964933918468192} a^{2} - \frac{442725157789467691938021797351159}{1880855542439460553318900240556512} a + \frac{2219993701127327245605368742724381}{88400210494654646005988311306156064}$
Class group and class number
$C_{2}\times C_{70}\times C_{140}$, which has order $19600$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 6596954.07823 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 16 |
| The 10 conjugacy class representatives for $C_4:C_4$ |
| Character table for $C_4:C_4$ |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{8}$ | R | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/47.1.0.1}{1} }^{16}$ | R | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $17$ | 17.4.3.1 | $x^{4} - 17$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 17.4.3.1 | $x^{4} - 17$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 17.4.3.1 | $x^{4} - 17$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 17.4.3.1 | $x^{4} - 17$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| $53$ | 53.8.6.1 | $x^{8} - 1643 x^{4} + 1755625$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |
| 53.8.6.1 | $x^{8} - 1643 x^{4} + 1755625$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |