Normalized defining polynomial
\( x^{16} - 4 x^{15} + x^{14} + 14 x^{13} + 450 x^{12} - 3772 x^{11} + 4773 x^{10} + 5215 x^{9} - 100624 x^{8} + 363819 x^{7} - 510377 x^{6} - 1201029 x^{5} + 25631015 x^{4} + 40577113 x^{3} - 42465958 x^{2} - 41607389 x + 68049763 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(286218361857094751614277009933470801=17^{12}\cdot 53^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $164.45$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $17, 53$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3}$, $\frac{1}{33618820} a^{12} - \frac{3}{33618820} a^{11} + \frac{400819}{33618820} a^{10} - \frac{5330869}{33618820} a^{9} - \frac{3057511}{16809410} a^{8} + \frac{12325573}{33618820} a^{7} - \frac{2853223}{16809410} a^{6} - \frac{1739309}{33618820} a^{5} + \frac{114848}{8404705} a^{4} + \frac{6978509}{33618820} a^{3} - \frac{3546531}{33618820} a^{2} - \frac{3560687}{8404705} a + \frac{12406957}{33618820}$, $\frac{1}{33618820} a^{13} + \frac{40081}{3361882} a^{11} - \frac{1032103}{8404705} a^{10} - \frac{5298219}{33618820} a^{9} - \frac{6019493}{33618820} a^{8} - \frac{2348547}{33618820} a^{7} + \frac{14760173}{33618820} a^{6} + \frac{2410175}{6723764} a^{5} + \frac{1671337}{6723764} a^{4} + \frac{289793}{16809410} a^{3} - \frac{8072931}{33618820} a^{2} - \frac{13511877}{33618820} a + \frac{3602051}{33618820}$, $\frac{1}{33618820} a^{14} - \frac{1462991}{16809410} a^{11} + \frac{6779171}{33618820} a^{10} - \frac{1330113}{33618820} a^{9} - \frac{3643417}{33618820} a^{8} - \frac{13411417}{33618820} a^{7} - \frac{2025549}{6723764} a^{6} + \frac{827209}{6723764} a^{5} - \frac{3715051}{8404705} a^{4} + \frac{4749369}{33618820} a^{3} + \frac{630993}{33618820} a^{2} - \frac{4302169}{33618820} a + \frac{649550}{1680941}$, $\frac{1}{128903995978246149644883815153301740} a^{15} - \frac{957152561001054635773816417}{64451997989123074822441907576650870} a^{14} + \frac{17090874604512178594850763}{1371319106151554783456210799503210} a^{13} - \frac{207398812596108694435568539}{25780799195649229928976763030660348} a^{12} - \frac{13313871886094433156962875506494151}{64451997989123074822441907576650870} a^{11} + \frac{13311572857651370598804119314016981}{64451997989123074822441907576650870} a^{10} - \frac{7140804190937573060669629413184104}{32225998994561537411220953788325435} a^{9} + \frac{13492056664613857755055135677242421}{128903995978246149644883815153301740} a^{8} - \frac{953350184304250674850397759148601}{12890399597824614964488381515330174} a^{7} + \frac{39877544190025210873624960816358819}{128903995978246149644883815153301740} a^{6} - \frac{28743255219023341081538624580739607}{128903995978246149644883815153301740} a^{5} + \frac{3840153530334158282570291132572919}{128903995978246149644883815153301740} a^{4} + \frac{26418989622772188607365198336501601}{64451997989123074822441907576650870} a^{3} - \frac{283423585384837519695283031112637}{12890399597824614964488381515330174} a^{2} - \frac{13957187086629797366375871494090946}{32225998994561537411220953788325435} a - \frac{10902910722969133484178069925618879}{128903995978246149644883815153301740}$
Class group and class number
$C_{2}\times C_{14}\times C_{476}$, which has order $13328$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 6878292.5579 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 16 |
| The 10 conjugacy class representatives for $C_4:C_4$ |
| Character table for $C_4:C_4$ |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{8}$ | R | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/47.1.0.1}{1} }^{16}$ | R | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $17$ | 17.8.6.1 | $x^{8} - 119 x^{4} + 23409$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |
| 17.8.6.1 | $x^{8} - 119 x^{4} + 23409$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| $53$ | 53.4.3.2 | $x^{4} - 212$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 53.4.3.2 | $x^{4} - 212$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 53.4.3.2 | $x^{4} - 212$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 53.4.3.2 | $x^{4} - 212$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |