Normalized defining polynomial
\( x^{16} - 3 x^{15} + 183 x^{14} - 159 x^{13} + 13024 x^{12} + 19563 x^{11} + 442958 x^{10} + 2076975 x^{9} + 14494211 x^{8} + 72959856 x^{7} + 412915231 x^{6} + 1894750586 x^{5} + 6943110997 x^{4} + 18036657805 x^{3} + 32555640354 x^{2} + 33661076896 x + 15061337953 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(286218361857094751614277009933470801=17^{12}\cdot 53^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $164.45$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $17, 53$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{5} - \frac{1}{2}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{6} - \frac{1}{2} a$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{7} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{8} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{14} - \frac{1}{2} a^{9} - \frac{1}{2} a^{4}$, $\frac{1}{15693880299761037451719874365336987467250428140233511537701040977690730898422} a^{15} - \frac{2938007885434619602625447851728186153726117600365049832224288133595573981069}{15693880299761037451719874365336987467250428140233511537701040977690730898422} a^{14} + \frac{207960977498476882404086463746739458162607524201235728980058581667669800361}{7846940149880518725859937182668493733625214070116755768850520488845365449211} a^{13} + \frac{1936135237797839013420354320727247706038802738019455404667997349362233394046}{7846940149880518725859937182668493733625214070116755768850520488845365449211} a^{12} - \frac{323863080107502702525273940910650576985333570083996510348290722735709464261}{7846940149880518725859937182668493733625214070116755768850520488845365449211} a^{11} - \frac{3067509663657547490789118853213463501359688254242427046350010559086885095791}{15693880299761037451719874365336987467250428140233511537701040977690730898422} a^{10} - \frac{457442389383020695056502230728589438047407783954990573751969408117993316105}{15693880299761037451719874365336987467250428140233511537701040977690730898422} a^{9} + \frac{43734496071919760399934525978399512690248918780104904812215901201730907338}{603610780760039901989225937128345671817324159239750443757732345295797342247} a^{8} - \frac{644791336187082811976360450741708213856301560438461302195830606067990836948}{7846940149880518725859937182668493733625214070116755768850520488845365449211} a^{7} + \frac{1222445332869185147309465151767510646973697704580049352918082995526804863524}{7846940149880518725859937182668493733625214070116755768850520488845365449211} a^{6} + \frac{2799241817933174715903264587797467677705877900866300958921899347216196370865}{15693880299761037451719874365336987467250428140233511537701040977690730898422} a^{5} - \frac{6275094920357775844564723392734934371003175981116198354225049862093995055951}{15693880299761037451719874365336987467250428140233511537701040977690730898422} a^{4} + \frac{9470301059106265632350912616420777099374235891109123602248316158473965712}{603610780760039901989225937128345671817324159239750443757732345295797342247} a^{3} - \frac{181159798490963590554023619491931731463408487303638852419912282201302297778}{7846940149880518725859937182668493733625214070116755768850520488845365449211} a^{2} - \frac{3251611591614754881920282071814689005142314171172245762818527074091892331761}{7846940149880518725859937182668493733625214070116755768850520488845365449211} a - \frac{33950151294014620322900675149240602115148374622594088557235297482465064247}{166956173401713164379998663461031781566493916385462888698947244443518413813}$
Class group and class number
$C_{2}\times C_{280}\times C_{560}$, which has order $313600$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 452391.453967 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 16 |
| The 10 conjugacy class representatives for $C_4:C_4$ |
| Character table for $C_4:C_4$ |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{8}$ | R | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/43.1.0.1}{1} }^{16}$ | ${\href{/LocalNumberField/47.1.0.1}{1} }^{16}$ | R | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $17$ | 17.8.6.1 | $x^{8} - 119 x^{4} + 23409$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |
| 17.8.6.1 | $x^{8} - 119 x^{4} + 23409$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| $53$ | 53.8.6.1 | $x^{8} - 1643 x^{4} + 1755625$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |
| 53.8.6.1 | $x^{8} - 1643 x^{4} + 1755625$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |