Normalized defining polynomial
\( x^{16} - 8 x^{15} + 26 x^{14} - 8 x^{13} - 102 x^{12} - 158 x^{11} + 2102 x^{10} - 4202 x^{9} + 4010 x^{8} - 26056 x^{7} + 129750 x^{6} - 242978 x^{5} + 262361 x^{4} - 607918 x^{3} + 1746316 x^{2} - 1857456 x + 630208 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(2859655432078149808865465089=17^{14}\cdot 19^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $52.00$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $17, 19$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{7} - \frac{1}{2} a$, $\frac{1}{4} a^{8} - \frac{1}{4} a^{2}$, $\frac{1}{8} a^{9} + \frac{3}{8} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{8} a^{10} - \frac{1}{8} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{104} a^{11} + \frac{1}{52} a^{10} + \frac{1}{52} a^{9} - \frac{3}{26} a^{8} - \frac{3}{26} a^{7} - \frac{3}{13} a^{6} + \frac{23}{104} a^{5} - \frac{3}{52} a^{4} + \frac{25}{52} a^{3} - \frac{2}{13} a^{2} + \frac{1}{26} a - \frac{4}{13}$, $\frac{1}{3536} a^{12} + \frac{3}{1768} a^{11} + \frac{31}{1768} a^{10} + \frac{191}{3536} a^{9} - \frac{1}{104} a^{8} - \frac{61}{442} a^{7} + \frac{811}{3536} a^{6} + \frac{251}{1768} a^{5} - \frac{5}{136} a^{4} - \frac{1155}{3536} a^{3} - \frac{745}{1768} a^{2} - \frac{251}{884} a - \frac{21}{221}$, $\frac{1}{3536} a^{13} - \frac{1}{442} a^{11} + \frac{193}{3536} a^{10} + \frac{3}{136} a^{9} + \frac{31}{884} a^{8} + \frac{47}{272} a^{7} - \frac{3}{884} a^{6} - \frac{97}{884} a^{5} - \frac{613}{3536} a^{4} - \frac{33}{104} a^{3} + \frac{88}{221} a^{2} - \frac{95}{221} a - \frac{27}{221}$, $\frac{1}{41668224} a^{14} + \frac{1127}{41668224} a^{13} + \frac{2719}{20834112} a^{12} + \frac{180287}{41668224} a^{11} - \frac{1212827}{41668224} a^{10} - \frac{214951}{20834112} a^{9} + \frac{3770947}{41668224} a^{8} + \frac{3423}{1068416} a^{7} + \frac{731283}{6944704} a^{6} + \frac{315505}{2451072} a^{5} + \frac{591911}{3205248} a^{4} + \frac{6416167}{20834112} a^{3} - \frac{1468575}{3472352} a^{2} - \frac{247727}{2604264} a + \frac{220565}{651066}$, $\frac{1}{484936125682428181632} a^{15} + \frac{203311911697}{484936125682428181632} a^{14} - \frac{276643483351881}{2377137870992295008} a^{13} - \frac{9752873218143031}{161645375227476060544} a^{12} - \frac{2104768407855226645}{484936125682428181632} a^{11} + \frac{1683869711972893035}{40411343806869015136} a^{10} + \frac{3914977547585689885}{161645375227476060544} a^{9} - \frac{9403934625025675369}{484936125682428181632} a^{8} + \frac{1907259115900824701}{40411343806869015136} a^{7} + \frac{77392226191416090245}{484936125682428181632} a^{6} - \frac{19117019884132833753}{161645375227476060544} a^{5} + \frac{4558442370965786229}{40411343806869015136} a^{4} + \frac{16589055693480241055}{60617015710303522704} a^{3} + \frac{13707631393742480885}{60617015710303522704} a^{2} - \frac{1065740900779901275}{15154253927575880676} a + \frac{24473847695462990}{88106127485906283}$
Class group and class number
$C_{8}$, which has order $8$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 11728094.3015 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 16 |
| The 7 conjugacy class representatives for $QD_{16}$ |
| Character table for $QD_{16}$ |
Intermediate fields
| \(\Q(\sqrt{-19}) \), \(\Q(\sqrt{17}) \), \(\Q(\sqrt{-323}) \), \(\Q(\sqrt{17}, \sqrt{-19})\), 4.2.93347.1 x2, 4.0.1773593.1 x2, 8.0.3145632129649.1, 8.2.2814512958107.2 x4 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 8 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{8}$ | R | R | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/43.1.0.1}{1} }^{16}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $17$ | 17.8.7.4 | $x^{8} - 12393$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ |
| 17.8.7.4 | $x^{8} - 12393$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ | |
| $19$ | 19.4.2.1 | $x^{4} + 57 x^{2} + 1444$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 19.4.2.1 | $x^{4} + 57 x^{2} + 1444$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 19.4.2.1 | $x^{4} + 57 x^{2} + 1444$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 19.4.2.1 | $x^{4} + 57 x^{2} + 1444$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |