Normalized defining polynomial
\( x^{16} - 2 x^{15} - 8 x^{14} + 30 x^{13} - 39 x^{12} - 110 x^{11} + 1336 x^{10} - 5341 x^{9} + 18122 x^{8} - 41394 x^{7} + 94489 x^{6} - 151578 x^{5} + 256578 x^{4} - 246727 x^{3} + 388080 x^{2} - 78291 x + 242827 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(2859655432078149808865465089=17^{14}\cdot 19^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $52.00$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $17, 19$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{9} - \frac{1}{2} a^{6} - \frac{1}{2} a^{3} - \frac{1}{2}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{10} - \frac{1}{2} a^{7} - \frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{202} a^{14} - \frac{1}{101} a^{13} - \frac{22}{101} a^{12} + \frac{1}{202} a^{11} + \frac{15}{101} a^{10} + \frac{28}{101} a^{9} - \frac{47}{202} a^{8} + \frac{8}{101} a^{7} + \frac{9}{101} a^{6} - \frac{55}{202} a^{5} + \frac{6}{101} a^{4} + \frac{42}{101} a^{3} - \frac{91}{202} a^{2} + \frac{11}{101} a + \frac{41}{101}$, $\frac{1}{30680715564551671347020486765663253998} a^{15} + \frac{32740667608595336515457479367274402}{15340357782275835673510243382831626999} a^{14} + \frac{735895873291543295192461032198829981}{15340357782275835673510243382831626999} a^{13} + \frac{2444859261728794114672214225329881811}{30680715564551671347020486765663253998} a^{12} + \frac{2308257514020303504021225449278769277}{15340357782275835673510243382831626999} a^{11} + \frac{3202765413852903218903998285938703106}{15340357782275835673510243382831626999} a^{10} - \frac{1904197533420227376396715555241496495}{30680715564551671347020486765663253998} a^{9} - \frac{3146413245660217320986449670808235299}{15340357782275835673510243382831626999} a^{8} + \frac{6139949456353416847588095946009696165}{15340357782275835673510243382831626999} a^{7} - \frac{13579780239124946376274544572556617265}{30680715564551671347020486765663253998} a^{6} - \frac{4470354528646966191622656503430211516}{15340357782275835673510243382831626999} a^{5} + \frac{3069571307753722995097560967851602706}{15340357782275835673510243382831626999} a^{4} + \frac{2826467812989772694473756715391511483}{30680715564551671347020486765663253998} a^{3} + \frac{7265287201608760442441158970512761007}{15340357782275835673510243382831626999} a^{2} - \frac{2289241656588876674278227091730029274}{15340357782275835673510243382831626999} a + \frac{6899002628511704700509004066951738436}{15340357782275835673510243382831626999}$
Class group and class number
$C_{10}\times C_{10}$, which has order $100$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 149969.889475 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^2:C_8$ (as 16T24):
| A solvable group of order 32 |
| The 20 conjugacy class representatives for $C_2^2 : C_8$ |
| Character table for $C_2^2 : C_8$ |
Intermediate fields
| \(\Q(\sqrt{17}) \), 4.4.4913.1, 4.2.5491.1, 4.2.93347.1, 8.0.53475746204033.2, 8.4.148132260953.1, 8.4.8713662409.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 16 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{8}$ | R | R | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 17 | Data not computed | ||||||
| $19$ | 19.4.2.2 | $x^{4} - 19 x^{2} + 722$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ |
| 19.4.2.2 | $x^{4} - 19 x^{2} + 722$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 19.8.4.1 | $x^{8} + 7220 x^{4} - 27436 x^{2} + 13032100$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |