Properties

Label 16.0.285727024783360000.1
Degree $16$
Signature $[0, 8]$
Discriminant $2^{16}\cdot 5^{4}\cdot 17^{8}$
Root discriminant $12.33$
Ramified primes $2, 5, 17$
Class number $1$
Class group Trivial
Galois group $C_8:C_2^2$ (as 16T35)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, 4, 5, -10, -13, 6, -17, -14, 48, 32, -9, -2, -5, -2, 2, -2, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^16 - 2*x^15 + 2*x^14 - 2*x^13 - 5*x^12 - 2*x^11 - 9*x^10 + 32*x^9 + 48*x^8 - 14*x^7 - 17*x^6 + 6*x^5 - 13*x^4 - 10*x^3 + 5*x^2 + 4*x + 1)
 
gp: K = bnfinit(x^16 - 2*x^15 + 2*x^14 - 2*x^13 - 5*x^12 - 2*x^11 - 9*x^10 + 32*x^9 + 48*x^8 - 14*x^7 - 17*x^6 + 6*x^5 - 13*x^4 - 10*x^3 + 5*x^2 + 4*x + 1, 1)
 

Normalized defining polynomial

\( x^{16} - 2 x^{15} + 2 x^{14} - 2 x^{13} - 5 x^{12} - 2 x^{11} - 9 x^{10} + 32 x^{9} + 48 x^{8} - 14 x^{7} - 17 x^{6} + 6 x^{5} - 13 x^{4} - 10 x^{3} + 5 x^{2} + 4 x + 1 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $16$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 8]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(285727024783360000=2^{16}\cdot 5^{4}\cdot 17^{8}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $12.33$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 5, 17$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{10} - \frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2}$, $\frac{1}{10} a^{13} - \frac{1}{5} a^{12} - \frac{1}{2} a^{11} - \frac{1}{10} a^{9} - \frac{1}{5} a^{8} + \frac{3}{10} a^{7} - \frac{1}{5} a^{6} - \frac{2}{5} a^{5} + \frac{2}{5} a^{4} - \frac{2}{5} a^{2} - \frac{1}{10} a - \frac{1}{5}$, $\frac{1}{190} a^{14} + \frac{1}{190} a^{13} + \frac{29}{190} a^{12} - \frac{1}{38} a^{11} + \frac{49}{190} a^{10} + \frac{5}{38} a^{9} + \frac{7}{190} a^{8} + \frac{7}{190} a^{7} - \frac{1}{19} a^{6} - \frac{14}{95} a^{5} - \frac{9}{95} a^{4} - \frac{37}{95} a^{3} + \frac{17}{190} a^{2} - \frac{5}{38} a + \frac{17}{95}$, $\frac{1}{5125630} a^{15} - \frac{11379}{5125630} a^{14} - \frac{28846}{2562815} a^{13} + \frac{955667}{5125630} a^{12} - \frac{796933}{2562815} a^{11} + \frac{137609}{1025126} a^{10} + \frac{364759}{2562815} a^{9} - \frac{1897801}{5125630} a^{8} + \frac{1211247}{5125630} a^{7} - \frac{26792}{134885} a^{6} + \frac{461848}{2562815} a^{5} - \frac{889759}{2562815} a^{4} + \frac{81573}{269770} a^{3} - \frac{1598611}{5125630} a^{2} + \frac{165165}{1025126} a + \frac{730206}{2562815}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $7$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( \frac{17105}{19342} a^{15} - \frac{21257}{9671} a^{14} + \frac{60625}{19342} a^{13} - \frac{78997}{19342} a^{12} - \frac{22475}{19342} a^{11} - \frac{57735}{19342} a^{10} - \frac{123067}{19342} a^{9} + \frac{582463}{19342} a^{8} + \frac{246691}{9671} a^{7} - \frac{274397}{19342} a^{6} - \frac{23951}{9671} a^{5} + \frac{33931}{9671} a^{4} - \frac{207617}{19342} a^{3} - \frac{34712}{9671} a^{2} + \frac{2081}{509} a + \frac{27519}{19342} \) (order $4$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 210.317511063 \)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_8:C_2^2$ (as 16T35):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 32
The 11 conjugacy class representatives for $C_8:C_2^2$
Character table for $C_8:C_2^2$

Intermediate fields

\(\Q(\sqrt{-1}) \), \(\Q(\sqrt{17}) \), \(\Q(\sqrt{-17}) \), 4.0.272.1 x2, 4.2.1156.1 x2, \(\Q(i, \sqrt{17})\), 8.0.31443200.1 x2, 8.0.31443200.2 x2, 8.0.21381376.2

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Galois closure: data not computed
Degree 8 siblings: data not computed
Degree 16 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ R ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ R ${\href{/LocalNumberField/19.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/29.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/37.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/53.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{8}$ ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$2.8.8.1$x^{8} + 28 x^{4} + 144$$2$$4$$8$$C_4\times C_2$$[2]^{4}$
2.8.8.1$x^{8} + 28 x^{4} + 144$$2$$4$$8$$C_4\times C_2$$[2]^{4}$
$5$5.2.0.1$x^{2} - x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
5.2.0.1$x^{2} - x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
5.2.0.1$x^{2} - x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
5.2.0.1$x^{2} - x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
5.4.2.1$x^{4} + 15 x^{2} + 100$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
5.4.2.1$x^{4} + 15 x^{2} + 100$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
$17$17.2.1.1$x^{2} - 17$$2$$1$$1$$C_2$$[\ ]_{2}$
17.2.1.1$x^{2} - 17$$2$$1$$1$$C_2$$[\ ]_{2}$
17.2.1.1$x^{2} - 17$$2$$1$$1$$C_2$$[\ ]_{2}$
17.2.1.1$x^{2} - 17$$2$$1$$1$$C_2$$[\ ]_{2}$
17.4.2.1$x^{4} + 85 x^{2} + 2601$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
17.4.2.1$x^{4} + 85 x^{2} + 2601$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$