Normalized defining polynomial
\( x^{16} - 6 x^{15} + 6 x^{14} + 72 x^{13} - 362 x^{12} + 352 x^{11} + 2632 x^{10} - 8620 x^{9} + 560 x^{8} + 37448 x^{7} - 59040 x^{6} - 9936 x^{5} + 128200 x^{4} - 166896 x^{3} + 109440 x^{2} - 34352 x + 5776 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(2852586422067225600000000=2^{16}\cdot 3^{8}\cdot 5^{8}\cdot 19^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $33.76$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 19$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4}$, $\frac{1}{2} a^{5}$, $\frac{1}{2} a^{6}$, $\frac{1}{2} a^{7}$, $\frac{1}{4} a^{8}$, $\frac{1}{4} a^{9}$, $\frac{1}{4} a^{10}$, $\frac{1}{4} a^{11}$, $\frac{1}{80} a^{12} + \frac{1}{40} a^{11} + \frac{1}{40} a^{9} + \frac{1}{10} a^{8} - \frac{1}{5} a^{7} - \frac{1}{20} a^{6} - \frac{1}{5} a^{5} - \frac{1}{5} a^{4} + \frac{3}{10} a^{2} + \frac{1}{5} a + \frac{3}{10}$, $\frac{1}{80} a^{13} - \frac{1}{20} a^{11} + \frac{1}{40} a^{10} + \frac{1}{20} a^{9} + \frac{1}{10} a^{8} - \frac{3}{20} a^{7} - \frac{1}{10} a^{6} + \frac{1}{5} a^{5} - \frac{1}{10} a^{4} + \frac{3}{10} a^{3} - \frac{2}{5} a^{2} - \frac{1}{10} a + \frac{2}{5}$, $\frac{1}{160} a^{14} + \frac{1}{16} a^{11} - \frac{1}{10} a^{10} + \frac{1}{10} a^{9} - \frac{1}{8} a^{8} + \frac{1}{20} a^{7} - \frac{1}{5} a^{5} - \frac{1}{4} a^{4} - \frac{1}{5} a^{3} - \frac{9}{20} a^{2} + \frac{1}{10} a - \frac{2}{5}$, $\frac{1}{9655348602822563732239520} a^{15} - \frac{7381345683118451142631}{4827674301411281866119760} a^{14} - \frac{3587864303682252880173}{603459287676410233264970} a^{13} - \frac{10788668756131262109093}{4827674301411281866119760} a^{12} + \frac{198234365660281186763071}{2413837150705640933059880} a^{11} + \frac{277550036797805777998}{3110614884929949656005} a^{10} + \frac{1252782818316679232591}{2413837150705640933059880} a^{9} - \frac{3947878726633887807442}{301729643838205116632485} a^{8} - \frac{3146801472611566210887}{301729643838205116632485} a^{7} - \frac{51293232906243318989192}{301729643838205116632485} a^{6} - \frac{121522494696528624640711}{1206918575352820466529940} a^{5} - \frac{46852315368710420882606}{301729643838205116632485} a^{4} + \frac{113753083989125521972711}{241383715070564093305988} a^{3} + \frac{153183655148221433209}{15880507570431848243815} a^{2} + \frac{2777179643427884519354}{15880507570431848243815} a - \frac{1393969999017671659369}{15880507570431848243815}$
Class group and class number
$C_{8}$, which has order $8$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{343982983}{9709726205680} a^{15} + \frac{1136873817}{3883890482272} a^{14} - \frac{2866581917}{4854863102840} a^{13} - \frac{24731954579}{9709726205680} a^{12} + \frac{182943612111}{9709726205680} a^{11} - \frac{42276611437}{1213715775710} a^{10} - \frac{453592959797}{4854863102840} a^{9} + \frac{2577017222191}{4854863102840} a^{8} - \frac{1168338324967}{2427431551420} a^{7} - \frac{4506903605299}{2427431551420} a^{6} + \frac{1191024379665}{242743155142} a^{5} - \frac{4064224304597}{2427431551420} a^{4} - \frac{2142108374057}{242743155142} a^{3} + \frac{34301610383841}{2427431551420} a^{2} - \frac{2133840947871}{242743155142} a + \frac{3015242656297}{1213715775710} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 269457.876984 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times S_4$ (as 16T61):
| A solvable group of order 48 |
| The 10 conjugacy class representatives for $C_2\times S_4$ |
| Character table for $C_2\times S_4$ |
Intermediate fields
| \(\Q(\sqrt{-3}) \), \(\Q(\sqrt{-15}) \), \(\Q(\sqrt{5}) \), 4.4.259920.1, \(\Q(\sqrt{-3}, \sqrt{5})\), 8.8.1688960160000.3, 8.0.67558406400.5, 8.0.1688960160000.60 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 6 siblings: | data not computed |
| Degree 8 siblings: | data not computed |
| Degree 12 siblings: | data not computed |
| Degree 24 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{8}$ | R | ${\href{/LocalNumberField/23.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.8.11 | $x^{8} + 20 x^{2} + 4$ | $4$ | $2$ | $8$ | $S_4$ | $[4/3, 4/3]_{3}^{2}$ |
| 2.8.8.11 | $x^{8} + 20 x^{2} + 4$ | $4$ | $2$ | $8$ | $S_4$ | $[4/3, 4/3]_{3}^{2}$ | |
| $3$ | 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $5$ | 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $19$ | $\Q_{19}$ | $x + 4$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{19}$ | $x + 4$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{19}$ | $x + 4$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{19}$ | $x + 4$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 19.3.2.3 | $x^{3} - 304$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 19.3.2.3 | $x^{3} - 304$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 19.3.2.3 | $x^{3} - 304$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 19.3.2.3 | $x^{3} - 304$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ |