Properties

Label 16.0.28525864220...0000.1
Degree $16$
Signature $[0, 8]$
Discriminant $2^{16}\cdot 3^{8}\cdot 5^{8}\cdot 19^{8}$
Root discriminant $33.76$
Ramified primes $2, 3, 5, 19$
Class number $32$ (GRH)
Class group $[4, 8]$ (GRH)
Galois group $C_2^4$ (as 16T3)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![59536, 0, -166712, 0, 226937, 0, -124812, 0, 40268, 0, -7446, 0, 788, 0, -44, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^16 - 44*x^14 + 788*x^12 - 7446*x^10 + 40268*x^8 - 124812*x^6 + 226937*x^4 - 166712*x^2 + 59536)
 
gp: K = bnfinit(x^16 - 44*x^14 + 788*x^12 - 7446*x^10 + 40268*x^8 - 124812*x^6 + 226937*x^4 - 166712*x^2 + 59536, 1)
 

Normalized defining polynomial

\( x^{16} - 44 x^{14} + 788 x^{12} - 7446 x^{10} + 40268 x^{8} - 124812 x^{6} + 226937 x^{4} - 166712 x^{2} + 59536 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $16$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 8]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(2852586422067225600000000=2^{16}\cdot 3^{8}\cdot 5^{8}\cdot 19^{8}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $33.76$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 3, 5, 19$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is Galois and abelian over $\Q$.
Conductor:  \(1140=2^{2}\cdot 3\cdot 5\cdot 19\)
Dirichlet character group:    $\lbrace$$\chi_{1140}(1,·)$, $\chi_{1140}(569,·)$, $\chi_{1140}(911,·)$, $\chi_{1140}(721,·)$, $\chi_{1140}(341,·)$, $\chi_{1140}(151,·)$, $\chi_{1140}(989,·)$, $\chi_{1140}(799,·)$, $\chi_{1140}(419,·)$, $\chi_{1140}(229,·)$, $\chi_{1140}(379,·)$, $\chi_{1140}(1139,·)$, $\chi_{1140}(949,·)$, $\chi_{1140}(761,·)$, $\chi_{1140}(571,·)$, $\chi_{1140}(191,·)$$\rbrace$
This is a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{2} a^{7} - \frac{1}{2} a$, $\frac{1}{4} a^{8} + \frac{1}{4} a^{2}$, $\frac{1}{4} a^{9} + \frac{1}{4} a^{3}$, $\frac{1}{4} a^{10} + \frac{1}{4} a^{4}$, $\frac{1}{4} a^{11} + \frac{1}{4} a^{5}$, $\frac{1}{24} a^{12} - \frac{1}{24} a^{10} - \frac{1}{8} a^{8} + \frac{1}{24} a^{6} + \frac{1}{8} a^{4} - \frac{7}{24} a^{2} + \frac{1}{6}$, $\frac{1}{1464} a^{13} - \frac{109}{1464} a^{11} - \frac{19}{488} a^{9} - \frac{203}{1464} a^{7} - \frac{235}{488} a^{5} - \frac{541}{1464} a^{3} - \frac{40}{183} a$, $\frac{1}{4028892713196288} a^{14} + \frac{715014301747}{35972256367824} a^{12} + \frac{120916502968381}{1007223178299072} a^{10} - \frac{198939194219971}{2014446356598144} a^{8} + \frac{238533770829857}{1007223178299072} a^{6} + \frac{108449175461537}{1007223178299072} a^{4} - \frac{1956954698086327}{4028892713196288} a^{2} - \frac{5575825681723}{16511855381952}$, $\frac{1}{8057785426392576} a^{15} + \frac{2449114133}{71944512735648} a^{13} - \frac{74130830060457}{671482118866048} a^{11} - \frac{442489061103763}{4028892713196288} a^{9} - \frac{81250001705997}{671482118866048} a^{7} - \frac{430250106374647}{2014446356598144} a^{5} + \frac{3951537552755497}{8057785426392576} a^{3} + \frac{168243744597147}{671482118866048} a$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{4}\times C_{8}$, which has order $32$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $7$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( \frac{1394549221}{83069952849408} a^{15} - \frac{178554861}{247232002528} a^{13} + \frac{258926389241}{20767488212352} a^{11} - \frac{4587298247935}{41534976424704} a^{9} + \frac{10986581283613}{20767488212352} a^{7} - \frac{26435153049331}{20767488212352} a^{5} + \frac{38136086563471}{27689984283136} a^{3} + \frac{12629680759477}{20767488212352} a \) (order $12$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 274735.259425 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_2^4$ (as 16T3):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
An abelian group of order 16
The 16 conjugacy class representatives for $C_2^4$
Character table for $C_2^4$

Intermediate fields

\(\Q(\sqrt{285}) \), \(\Q(\sqrt{-1}) \), \(\Q(\sqrt{-285}) \), \(\Q(\sqrt{57}) \), \(\Q(\sqrt{5}) \), \(\Q(\sqrt{-57}) \), \(\Q(\sqrt{-5}) \), \(\Q(\sqrt{95}) \), \(\Q(\sqrt{3}) \), \(\Q(\sqrt{-95}) \), \(\Q(\sqrt{-3}) \), \(\Q(\sqrt{15}) \), \(\Q(\sqrt{19}) \), \(\Q(\sqrt{-15}) \), \(\Q(\sqrt{-19}) \), \(\Q(i, \sqrt{285})\), \(\Q(\sqrt{5}, \sqrt{57})\), \(\Q(\sqrt{-5}, \sqrt{-57})\), \(\Q(i, \sqrt{57})\), \(\Q(i, \sqrt{5})\), \(\Q(\sqrt{-5}, \sqrt{57})\), \(\Q(\sqrt{5}, \sqrt{-57})\), \(\Q(\sqrt{3}, \sqrt{95})\), \(\Q(\sqrt{-3}, \sqrt{-95})\), \(\Q(\sqrt{15}, \sqrt{19})\), \(\Q(\sqrt{-15}, \sqrt{-19})\), \(\Q(i, \sqrt{95})\), \(\Q(\zeta_{12})\), \(\Q(i, \sqrt{15})\), \(\Q(i, \sqrt{19})\), \(\Q(\sqrt{-3}, \sqrt{95})\), \(\Q(\sqrt{3}, \sqrt{-95})\), \(\Q(\sqrt{15}, \sqrt{-19})\), \(\Q(\sqrt{-15}, \sqrt{19})\), \(\Q(\sqrt{15}, \sqrt{57})\), \(\Q(\sqrt{3}, \sqrt{19})\), \(\Q(\sqrt{-15}, \sqrt{57})\), \(\Q(\sqrt{-3}, \sqrt{-19})\), \(\Q(\sqrt{5}, \sqrt{19})\), \(\Q(\sqrt{3}, \sqrt{5})\), \(\Q(\sqrt{5}, \sqrt{-19})\), \(\Q(\sqrt{-3}, \sqrt{5})\), \(\Q(\sqrt{-15}, \sqrt{-57})\), \(\Q(\sqrt{3}, \sqrt{-19})\), \(\Q(\sqrt{15}, \sqrt{-57})\), \(\Q(\sqrt{-3}, \sqrt{19})\), \(\Q(\sqrt{-5}, \sqrt{-19})\), \(\Q(\sqrt{3}, \sqrt{-5})\), \(\Q(\sqrt{-5}, \sqrt{19})\), \(\Q(\sqrt{-3}, \sqrt{-5})\), 8.0.1688960160000.8, 8.0.1688960160000.10, 8.0.1688960160000.6, 8.8.1688960160000.1, 8.0.6597500625.1, 8.0.1688960160000.1, 8.0.1688960160000.3, 8.0.1688960160000.7, 8.0.2702336256.1, 8.0.20851360000.1, 8.0.12960000.1, 8.0.1688960160000.5, 8.0.1688960160000.2, 8.0.1688960160000.9, 8.0.1688960160000.4

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R R R ${\href{/LocalNumberField/7.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/11.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/13.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/17.2.0.1}{2} }^{8}$ R ${\href{/LocalNumberField/23.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/29.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/37.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/43.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/53.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$2.4.4.1$x^{4} + 8 x^{2} + 4$$2$$2$$4$$C_2^2$$[2]^{2}$
2.4.4.1$x^{4} + 8 x^{2} + 4$$2$$2$$4$$C_2^2$$[2]^{2}$
2.4.4.1$x^{4} + 8 x^{2} + 4$$2$$2$$4$$C_2^2$$[2]^{2}$
2.4.4.1$x^{4} + 8 x^{2} + 4$$2$$2$$4$$C_2^2$$[2]^{2}$
$3$3.4.2.1$x^{4} + 9 x^{2} + 36$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
3.4.2.1$x^{4} + 9 x^{2} + 36$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
3.4.2.1$x^{4} + 9 x^{2} + 36$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
3.4.2.1$x^{4} + 9 x^{2} + 36$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
$5$5.4.2.1$x^{4} + 15 x^{2} + 100$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
5.4.2.1$x^{4} + 15 x^{2} + 100$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
5.4.2.1$x^{4} + 15 x^{2} + 100$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
5.4.2.1$x^{4} + 15 x^{2} + 100$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
$19$19.4.2.1$x^{4} + 57 x^{2} + 1444$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
19.4.2.1$x^{4} + 57 x^{2} + 1444$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
19.4.2.1$x^{4} + 57 x^{2} + 1444$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
19.4.2.1$x^{4} + 57 x^{2} + 1444$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$