Normalized defining polynomial
\( x^{16} - 5 x^{15} + 16 x^{14} - 25 x^{13} + 27 x^{12} - 35 x^{11} + 48 x^{10} - 90 x^{9} + 165 x^{8} - 195 x^{7} + 247 x^{6} - 190 x^{5} + 157 x^{4} - 80 x^{3} + 39 x^{2} - 10 x + 1 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(2850029791259765625=3^{4}\cdot 5^{14}\cdot 7^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $14.24$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 5, 7$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{11} a^{12} - \frac{2}{11} a^{11} - \frac{1}{11} a^{10} + \frac{3}{11} a^{9} - \frac{2}{11} a^{8} + \frac{1}{11} a^{7} - \frac{1}{11} a^{6} + \frac{5}{11} a^{5} - \frac{2}{11} a^{4} + \frac{1}{11} a^{3} - \frac{4}{11} a^{2} - \frac{1}{11} a + \frac{5}{11}$, $\frac{1}{11} a^{13} - \frac{5}{11} a^{11} + \frac{1}{11} a^{10} + \frac{4}{11} a^{9} - \frac{3}{11} a^{8} + \frac{1}{11} a^{7} + \frac{3}{11} a^{6} - \frac{3}{11} a^{5} - \frac{3}{11} a^{4} - \frac{2}{11} a^{3} + \frac{2}{11} a^{2} + \frac{3}{11} a - \frac{1}{11}$, $\frac{1}{121} a^{14} + \frac{2}{121} a^{13} + \frac{5}{121} a^{12} - \frac{40}{121} a^{11} - \frac{15}{121} a^{10} + \frac{13}{121} a^{9} + \frac{30}{121} a^{8} + \frac{37}{121} a^{7} + \frac{37}{121} a^{6} - \frac{14}{121} a^{5} - \frac{50}{121} a^{4} + \frac{52}{121} a^{3} - \frac{4}{11} a^{2} + \frac{6}{121} a - \frac{29}{121}$, $\frac{1}{145388881} a^{15} - \frac{65214}{145388881} a^{14} - \frac{308120}{13217171} a^{13} - \frac{3365607}{145388881} a^{12} - \frac{29691907}{145388881} a^{11} + \frac{9400909}{145388881} a^{10} + \frac{54601902}{145388881} a^{9} + \frac{11833740}{145388881} a^{8} - \frac{21474173}{145388881} a^{7} + \frac{55816880}{145388881} a^{6} - \frac{44812035}{145388881} a^{5} - \frac{36346265}{145388881} a^{4} + \frac{13707993}{145388881} a^{3} + \frac{72062139}{145388881} a^{2} + \frac{3675921}{13217171} a + \frac{11854085}{145388881}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{2783516}{13217171} a^{15} + \frac{151647940}{145388881} a^{14} - \frac{497846033}{145388881} a^{13} + \frac{814852256}{145388881} a^{12} - \frac{1010411364}{145388881} a^{11} + \frac{1322767881}{145388881} a^{10} - \frac{1626060021}{145388881} a^{9} + \frac{2927974070}{145388881} a^{8} - \frac{5363434863}{145388881} a^{7} + \frac{6846673476}{145388881} a^{6} - \frac{9265228842}{145388881} a^{5} + \frac{7205668930}{145388881} a^{4} - \frac{6482271137}{145388881} a^{3} + \frac{276381085}{13217171} a^{2} - \frac{1657006668}{145388881} a + \frac{374978565}{145388881} \) (order $10$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 2117.22006174 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$OD_{16}:C_2$ (as 16T16):
| A solvable group of order 32 |
| The 20 conjugacy class representatives for $(C_8:C_2):C_2$ |
| Character table for $(C_8:C_2):C_2$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), \(\Q(\sqrt{-35}) \), \(\Q(\sqrt{-7}) \), 4.4.6125.1, \(\Q(\zeta_{5})\), \(\Q(\sqrt{5}, \sqrt{-7})\), 8.0.37515625.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 16 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | R | R | R | ${\href{/LocalNumberField/11.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.8.0.1 | $x^{8} - x^{3} + 2$ | $1$ | $8$ | $0$ | $C_8$ | $[\ ]^{8}$ |
| 3.8.4.2 | $x^{8} - 27 x^{2} + 162$ | $2$ | $4$ | $4$ | $C_8$ | $[\ ]_{2}^{4}$ | |
| 5 | Data not computed | ||||||
| 7 | Data not computed | ||||||