Normalized defining polynomial
\( x^{16} - 8 x^{15} + 68 x^{14} - 336 x^{13} + 1624 x^{12} - 5740 x^{11} + 19026 x^{10} - 49568 x^{9} + 118149 x^{8} - 226316 x^{7} + 393078 x^{6} - 544768 x^{5} + 716170 x^{4} - 714504 x^{3} + 801260 x^{2} - 508136 x + 556804 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(28493690558847385600000000=2^{32}\cdot 5^{8}\cdot 19^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $38.99$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 19$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(760=2^{3}\cdot 5\cdot 19\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{760}(1,·)$, $\chi_{760}(721,·)$, $\chi_{760}(531,·)$, $\chi_{760}(341,·)$, $\chi_{760}(151,·)$, $\chi_{760}(609,·)$, $\chi_{760}(419,·)$, $\chi_{760}(229,·)$, $\chi_{760}(39,·)$, $\chi_{760}(379,·)$, $\chi_{760}(189,·)$, $\chi_{760}(759,·)$, $\chi_{760}(569,·)$, $\chi_{760}(571,·)$, $\chi_{760}(381,·)$, $\chi_{760}(191,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{3} a^{7} + \frac{1}{3} a^{6} + \frac{1}{3} a^{5} + \frac{1}{3} a^{4} + \frac{1}{3} a^{3} + \frac{1}{3} a^{2} + \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{6} a^{8} - \frac{1}{2} a^{4} + \frac{1}{3}$, $\frac{1}{6} a^{9} - \frac{1}{2} a^{5} + \frac{1}{3} a$, $\frac{1}{6} a^{10} - \frac{1}{2} a^{6} + \frac{1}{3} a^{2}$, $\frac{1}{6} a^{11} - \frac{1}{6} a^{7} + \frac{1}{3} a^{6} + \frac{1}{3} a^{5} + \frac{1}{3} a^{4} - \frac{1}{3} a^{3} + \frac{1}{3} a^{2} + \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{6} a^{12} - \frac{1}{6} a^{4}$, $\frac{1}{6} a^{13} - \frac{1}{6} a^{5}$, $\frac{1}{826073265096702} a^{14} - \frac{1}{118010466442386} a^{13} - \frac{8228757321983}{275357755032234} a^{12} + \frac{5219377139834}{413036632548351} a^{11} - \frac{1400799605147}{413036632548351} a^{10} + \frac{4347778622}{108665254551} a^{9} + \frac{65448273536413}{826073265096702} a^{8} - \frac{34959960271724}{413036632548351} a^{7} + \frac{56581200229723}{826073265096702} a^{6} + \frac{1434666682517}{39336822147462} a^{5} + \frac{179027919455614}{413036632548351} a^{4} - \frac{15257732439217}{413036632548351} a^{3} - \frac{66028759749020}{137678877516117} a^{2} - \frac{10957833191}{305726597001} a + \frac{150212833114550}{413036632548351}$, $\frac{1}{47088654330307304106} a^{15} + \frac{1583}{2616036351683739117} a^{14} + \frac{2593707687253962707}{47088654330307304106} a^{13} + \frac{1028788445019246827}{23544327165153652053} a^{12} - \frac{805700764619890505}{15696218110102434702} a^{11} - \frac{894067419749742293}{23544327165153652053} a^{10} + \frac{560873054075903771}{23544327165153652053} a^{9} - \frac{559458470194673038}{7848109055051217351} a^{8} + \frac{6124836247152386}{40663777487312007} a^{7} + \frac{5539587588000420383}{23544327165153652053} a^{6} + \frac{3892652580515790563}{47088654330307304106} a^{5} + \frac{3696291582650099558}{7848109055051217351} a^{4} - \frac{2360910857224815373}{23544327165153652053} a^{3} + \frac{7454473346805434449}{23544327165153652053} a^{2} - \frac{1150926669995503582}{7848109055051217351} a - \frac{3228340738641296098}{23544327165153652053}$
Class group and class number
$C_{24}$, which has order $24$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{807519836177}{121991332461936021} a^{15} + \frac{4037599180885}{81327554974624014} a^{14} - \frac{92064661402997}{243982664923872042} a^{13} + \frac{414709536389213}{243982664923872042} a^{12} - \frac{27942246444253}{3872740713077334} a^{11} + \frac{2762173585329455}{121991332461936021} a^{10} - \frac{7560521372615390}{121991332461936021} a^{9} + \frac{1206990033322921}{9036394997180446} a^{8} - \frac{18889543465809743}{81327554974624014} a^{7} + \frac{77018773620383705}{243982664923872042} a^{6} - \frac{76830654175885829}{243982664923872042} a^{5} + \frac{8978748528595910}{40663777487312007} a^{4} - \frac{5005787302800692}{17427333208848003} a^{3} + \frac{37262289787529900}{121991332461936021} a^{2} - \frac{15370753510540921}{40663777487312007} a + \frac{17206041769183933}{121991332461936021} \) (order $8$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 498581.960646 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| An abelian group of order 16 |
| The 16 conjugacy class representatives for $C_2^4$ |
| Character table for $C_2^4$ |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.2.0.1}{2} }^{8}$ | R | ${\href{/LocalNumberField/7.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{8}$ | R | ${\href{/LocalNumberField/23.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.16.6 | $x^{8} + 4 x^{6} + 8 x^{2} + 4$ | $4$ | $2$ | $16$ | $C_2^3$ | $[2, 3]^{2}$ |
| 2.8.16.6 | $x^{8} + 4 x^{6} + 8 x^{2} + 4$ | $4$ | $2$ | $16$ | $C_2^3$ | $[2, 3]^{2}$ | |
| $5$ | 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $19$ | 19.4.2.1 | $x^{4} + 57 x^{2} + 1444$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 19.4.2.1 | $x^{4} + 57 x^{2} + 1444$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 19.4.2.1 | $x^{4} + 57 x^{2} + 1444$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 19.4.2.1 | $x^{4} + 57 x^{2} + 1444$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |