Properties

Label 16.0.28446927251784561.1
Degree $16$
Signature $[0, 8]$
Discriminant $3^{12}\cdot 13^{4}\cdot 37^{4}$
Root discriminant $10.68$
Ramified primes $3, 13, 37$
Class number $1$
Class group Trivial
Galois group 16T1275

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, -6, 13, -13, 10, -12, 10, 3, -11, 7, -5, 5, -1, -1, 1, -1, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^16 - x^15 + x^14 - x^13 - x^12 + 5*x^11 - 5*x^10 + 7*x^9 - 11*x^8 + 3*x^7 + 10*x^6 - 12*x^5 + 10*x^4 - 13*x^3 + 13*x^2 - 6*x + 1)
 
gp: K = bnfinit(x^16 - x^15 + x^14 - x^13 - x^12 + 5*x^11 - 5*x^10 + 7*x^9 - 11*x^8 + 3*x^7 + 10*x^6 - 12*x^5 + 10*x^4 - 13*x^3 + 13*x^2 - 6*x + 1, 1)
 

Normalized defining polynomial

\( x^{16} - x^{15} + x^{14} - x^{13} - x^{12} + 5 x^{11} - 5 x^{10} + 7 x^{9} - 11 x^{8} + 3 x^{7} + 10 x^{6} - 12 x^{5} + 10 x^{4} - 13 x^{3} + 13 x^{2} - 6 x + 1 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $16$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 8]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(28446927251784561=3^{12}\cdot 13^{4}\cdot 37^{4}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $10.68$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $3, 13, 37$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{11} a^{14} + \frac{4}{11} a^{13} + \frac{3}{11} a^{12} - \frac{3}{11} a^{11} - \frac{4}{11} a^{10} - \frac{5}{11} a^{9} - \frac{2}{11} a^{8} - \frac{1}{11} a^{7} - \frac{2}{11} a^{6} + \frac{2}{11} a^{4} - \frac{2}{11} a^{3} - \frac{3}{11} a^{2} - \frac{3}{11} a - \frac{3}{11}$, $\frac{1}{2563} a^{15} - \frac{1}{233} a^{14} + \frac{1043}{2563} a^{13} + \frac{986}{2563} a^{12} + \frac{624}{2563} a^{11} + \frac{111}{233} a^{10} - \frac{565}{2563} a^{9} + \frac{997}{2563} a^{8} + \frac{970}{2563} a^{7} - \frac{377}{2563} a^{6} - \frac{647}{2563} a^{5} - \frac{1231}{2563} a^{4} - \frac{1194}{2563} a^{3} - \frac{189}{2563} a^{2} - \frac{893}{2563} a + \frac{1002}{2563}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $7$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( \frac{1002}{233} a^{15} - \frac{537}{233} a^{14} + \frac{780}{233} a^{13} - \frac{647}{233} a^{12} - \frac{1289}{233} a^{11} + \frac{4386}{233} a^{10} - \frac{2969}{233} a^{9} + \frac{5715}{233} a^{8} - \frac{8291}{233} a^{7} - \frac{760}{233} a^{6} + \frac{9465}{233} a^{5} - \frac{7649}{233} a^{4} + \frac{6591}{233} a^{3} - \frac{9735}{233} a^{2} + \frac{8322}{233} a - \frac{2090}{233} \) (order $6$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 88.8081502948 \)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

16T1275:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 1024
The 43 conjugacy class representatives for t16n1275
Character table for t16n1275 is not computed

Intermediate fields

\(\Q(\sqrt{-3}) \), 4.0.117.1, 8.0.4558437.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 16 siblings: data not computed
Degree 32 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ R ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/7.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ R ${\href{/LocalNumberField/17.8.0.1}{8} }{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/19.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/23.8.0.1}{8} }{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/29.8.0.1}{8} }{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ R ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/43.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{4}$ ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
3Data not computed
$13$13.4.0.1$x^{4} + x^{2} - x + 2$$1$$4$$0$$C_4$$[\ ]^{4}$
13.4.0.1$x^{4} + x^{2} - x + 2$$1$$4$$0$$C_4$$[\ ]^{4}$
13.8.4.1$x^{8} + 26 x^{6} + 845 x^{4} + 6591 x^{2} + 114244$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
$37$37.2.0.1$x^{2} - x + 5$$1$$2$$0$$C_2$$[\ ]^{2}$
37.2.1.2$x^{2} + 74$$2$$1$$1$$C_2$$[\ ]_{2}$
37.2.1.2$x^{2} + 74$$2$$1$$1$$C_2$$[\ ]_{2}$
37.2.0.1$x^{2} - x + 5$$1$$2$$0$$C_2$$[\ ]^{2}$
37.4.2.2$x^{4} - 37 x^{2} + 6845$$2$$2$$2$$C_4$$[\ ]_{2}^{2}$
37.4.0.1$x^{4} - x + 2$$1$$4$$0$$C_4$$[\ ]^{4}$