Properties

Label 16.0.28326296232...5681.1
Degree $16$
Signature $[0, 8]$
Discriminant $17^{8}\cdot 67^{8}$
Root discriminant $33.75$
Ramified primes $17, 67$
Class number $5$ (GRH)
Class group $[5]$ (GRH)
Galois group $C_2^2.SD_{16}$ (as 16T163)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![16, 72, 112, -512, 725, -913, 1023, -880, 518, -107, -137, 154, -56, -14, 22, -8, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^16 - 8*x^15 + 22*x^14 - 14*x^13 - 56*x^12 + 154*x^11 - 137*x^10 - 107*x^9 + 518*x^8 - 880*x^7 + 1023*x^6 - 913*x^5 + 725*x^4 - 512*x^3 + 112*x^2 + 72*x + 16)
 
gp: K = bnfinit(x^16 - 8*x^15 + 22*x^14 - 14*x^13 - 56*x^12 + 154*x^11 - 137*x^10 - 107*x^9 + 518*x^8 - 880*x^7 + 1023*x^6 - 913*x^5 + 725*x^4 - 512*x^3 + 112*x^2 + 72*x + 16, 1)
 

Normalized defining polynomial

\( x^{16} - 8 x^{15} + 22 x^{14} - 14 x^{13} - 56 x^{12} + 154 x^{11} - 137 x^{10} - 107 x^{9} + 518 x^{8} - 880 x^{7} + 1023 x^{6} - 913 x^{5} + 725 x^{4} - 512 x^{3} + 112 x^{2} + 72 x + 16 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $16$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 8]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(2832629623265327154715681=17^{8}\cdot 67^{8}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $33.75$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $17, 67$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{9} - \frac{1}{2} a^{7} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{4} a^{12} - \frac{1}{4} a^{10} - \frac{1}{2} a^{9} - \frac{1}{4} a^{8} - \frac{1}{2} a^{6} + \frac{1}{4} a^{5} + \frac{1}{4} a^{3} - \frac{1}{4} a^{2}$, $\frac{1}{6764} a^{13} + \frac{839}{6764} a^{12} - \frac{401}{6764} a^{11} - \frac{1105}{6764} a^{10} - \frac{1263}{6764} a^{9} - \frac{87}{6764} a^{8} + \frac{857}{3382} a^{7} + \frac{343}{6764} a^{6} - \frac{5}{6764} a^{5} + \frac{565}{6764} a^{4} - \frac{1637}{3382} a^{3} + \frac{2105}{6764} a^{2} - \frac{536}{1691} a + \frac{339}{1691}$, $\frac{1}{2989688} a^{14} - \frac{7}{2989688} a^{13} + \frac{304405}{2989688} a^{12} - \frac{331495}{2989688} a^{11} - \frac{398941}{2989688} a^{10} - \frac{696993}{2989688} a^{9} - \frac{9155}{39338} a^{8} + \frac{329231}{2989688} a^{7} - \frac{10875}{229976} a^{6} + \frac{10775}{229976} a^{5} - \frac{13543}{43966} a^{4} - \frac{927999}{2989688} a^{3} - \frac{181267}{1494844} a^{2} + \frac{89081}{373711} a - \frac{16572}{373711}$, $\frac{1}{2989688} a^{15} - \frac{7}{114988} a^{13} - \frac{41498}{373711} a^{12} - \frac{2463}{39338} a^{11} + \frac{52765}{373711} a^{10} - \frac{633613}{2989688} a^{9} - \frac{1216505}{2989688} a^{8} + \frac{195411}{1494844} a^{7} - \frac{12827}{57494} a^{6} - \frac{659975}{2989688} a^{5} + \frac{1437687}{2989688} a^{4} - \frac{10405}{229976} a^{3} + \frac{326381}{1494844} a^{2} - \frac{360193}{747422} a - \frac{8583}{19669}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{5}$, which has order $5$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $7$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 107917.031364 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_2^2.SD_{16}$ (as 16T163):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 64
The 19 conjugacy class representatives for $C_2^2.SD_{16}$
Character table for $C_2^2.SD_{16}$

Intermediate fields

\(\Q(\sqrt{-67}) \), 4.0.76313.1, 8.0.99002457473.1, 8.0.99002457473.2, 8.0.1683041777041.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 16 sibling: data not computed
Degree 32 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type ${\href{/LocalNumberField/2.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/13.2.0.1}{2} }^{8}$ R ${\href{/LocalNumberField/19.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{4}$ ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/37.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{4}$ ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$17$$\Q_{17}$$x + 3$$1$$1$$0$Trivial$[\ ]$
$\Q_{17}$$x + 3$$1$$1$$0$Trivial$[\ ]$
$\Q_{17}$$x + 3$$1$$1$$0$Trivial$[\ ]$
$\Q_{17}$$x + 3$$1$$1$$0$Trivial$[\ ]$
17.2.1.1$x^{2} - 17$$2$$1$$1$$C_2$$[\ ]_{2}$
17.2.1.1$x^{2} - 17$$2$$1$$1$$C_2$$[\ ]_{2}$
17.4.3.1$x^{4} - 17$$4$$1$$3$$C_4$$[\ ]_{4}$
17.4.3.1$x^{4} - 17$$4$$1$$3$$C_4$$[\ ]_{4}$
$67$67.2.1.2$x^{2} + 268$$2$$1$$1$$C_2$$[\ ]_{2}$
67.2.1.2$x^{2} + 268$$2$$1$$1$$C_2$$[\ ]_{2}$
67.2.1.2$x^{2} + 268$$2$$1$$1$$C_2$$[\ ]_{2}$
67.2.1.2$x^{2} + 268$$2$$1$$1$$C_2$$[\ ]_{2}$
67.2.1.2$x^{2} + 268$$2$$1$$1$$C_2$$[\ ]_{2}$
67.2.1.2$x^{2} + 268$$2$$1$$1$$C_2$$[\ ]_{2}$
67.2.1.2$x^{2} + 268$$2$$1$$1$$C_2$$[\ ]_{2}$
67.2.1.2$x^{2} + 268$$2$$1$$1$$C_2$$[\ ]_{2}$