Normalized defining polynomial
\( x^{16} - 2 x^{15} - 25 x^{14} + 36 x^{13} + 216 x^{12} - 324 x^{11} + 679 x^{10} + 6422 x^{9} + 2927 x^{8} + 1374 x^{7} + 14311 x^{6} - 22802 x^{5} - 16736 x^{4} - 47978 x^{3} - 157563 x^{2} + 76048 x + 231623 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(2832009822518079193000591441=7^{8}\cdot 53^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $51.97$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $7, 53$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{14} a^{8} + \frac{1}{14} a^{7} + \frac{2}{7} a^{6} + \frac{3}{14} a^{5} - \frac{5}{14} a^{4} - \frac{5}{14} a^{3} - \frac{3}{7} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{14} a^{9} + \frac{3}{14} a^{7} - \frac{1}{14} a^{6} + \frac{3}{7} a^{5} - \frac{1}{14} a^{3} - \frac{1}{14} a^{2} - \frac{1}{2}$, $\frac{1}{14} a^{10} - \frac{2}{7} a^{7} - \frac{3}{7} a^{6} + \frac{5}{14} a^{5} + \frac{2}{7} a^{2} - \frac{1}{2}$, $\frac{1}{14} a^{11} - \frac{1}{7} a^{7} - \frac{1}{2} a^{6} - \frac{1}{7} a^{5} - \frac{3}{7} a^{4} - \frac{1}{7} a^{3} + \frac{2}{7} a^{2} - \frac{1}{2} a$, $\frac{1}{98} a^{12} - \frac{1}{49} a^{10} + \frac{1}{98} a^{9} - \frac{11}{49} a^{7} + \frac{45}{98} a^{6} + \frac{5}{49} a^{5} - \frac{13}{49} a^{4} - \frac{1}{2} a^{3} - \frac{3}{7} a^{2} - \frac{1}{2}$, $\frac{1}{98} a^{13} - \frac{1}{49} a^{11} + \frac{1}{98} a^{10} - \frac{1}{98} a^{8} - \frac{16}{49} a^{7} - \frac{2}{49} a^{6} + \frac{37}{98} a^{5} + \frac{3}{7} a^{4} - \frac{1}{2} a^{3} - \frac{2}{7} a^{2} - \frac{1}{2}$, $\frac{1}{1173746} a^{14} - \frac{445}{586873} a^{13} + \frac{807}{167678} a^{12} - \frac{14933}{586873} a^{11} - \frac{18451}{586873} a^{10} - \frac{16523}{586873} a^{9} + \frac{36173}{1173746} a^{8} + \frac{519321}{1173746} a^{7} - \frac{16641}{1173746} a^{6} - \frac{179231}{1173746} a^{5} + \frac{168541}{586873} a^{4} - \frac{26753}{83839} a^{3} + \frac{7664}{83839} a^{2} + \frac{437}{23954} a - \frac{143}{413}$, $\frac{1}{13284866524916417919642089278} a^{15} + \frac{1946562403000297876047}{13284866524916417919642089278} a^{14} - \frac{12199117280962596731382319}{6642433262458208959821044639} a^{13} - \frac{28875745357333756871228003}{6642433262458208959821044639} a^{12} - \frac{18919461823328275211141221}{6642433262458208959821044639} a^{11} + \frac{35366745710837966371745811}{1897838074988059702806012754} a^{10} + \frac{2352716592620011163335990}{948919037494029851403006377} a^{9} + \frac{5501762601849641911114874}{390731368379894644695355567} a^{8} - \frac{144730109960602178609958915}{13284866524916417919642089278} a^{7} - \frac{6527812385541425498007752161}{13284866524916417919642089278} a^{6} - \frac{5655221358766931865606830695}{13284866524916417919642089278} a^{5} + \frac{1332844313288912693434437543}{13284866524916417919642089278} a^{4} - \frac{608946532620164464393833077}{1897838074988059702806012754} a^{3} + \frac{852066513435374648974877329}{1897838074988059702806012754} a^{2} + \frac{20917424802668499693162202}{135559862499147121629000911} a - \frac{3276326327197579022088033}{9348956034423939422689718}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 21203688.514 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 16 |
| The 7 conjugacy class representatives for $QD_{16}$ |
| Character table for $QD_{16}$ |
Intermediate fields
| \(\Q(\sqrt{-371}) \), \(\Q(\sqrt{53}) \), \(\Q(\sqrt{-7}) \), \(\Q(\sqrt{-7}, \sqrt{53})\), 4.2.19663.1 x2, 4.0.2597.2 x2, 8.0.18945044881.1, 8.2.7602375867247.2 x4 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 8 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.1.0.1}{1} }^{16}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ | R | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $7$ | 7.2.1.2 | $x^{2} + 14$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 7.2.1.2 | $x^{2} + 14$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 7.2.1.2 | $x^{2} + 14$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 7.2.1.2 | $x^{2} + 14$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 7.2.1.2 | $x^{2} + 14$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 7.2.1.2 | $x^{2} + 14$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 7.2.1.2 | $x^{2} + 14$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 7.2.1.2 | $x^{2} + 14$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| $53$ | 53.4.3.1 | $x^{4} - 53$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 53.4.3.1 | $x^{4} - 53$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 53.4.3.1 | $x^{4} - 53$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 53.4.3.1 | $x^{4} - 53$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |