Normalized defining polynomial
\( x^{16} - 4 x^{15} + 22 x^{14} - 108 x^{13} + 375 x^{12} - 1234 x^{11} + 3752 x^{10} - 9327 x^{9} + 21168 x^{8} - 49818 x^{7} + 114701 x^{6} - 232324 x^{5} + 382792 x^{4} - 472479 x^{3} + 397448 x^{2} - 200163 x + 45487 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(2832009822518079193000591441=7^{8}\cdot 53^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $51.97$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $7, 53$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{14} a^{12} + \frac{2}{7} a^{11} + \frac{1}{7} a^{10} + \frac{5}{14} a^{9} - \frac{2}{7} a^{8} - \frac{1}{2} a^{6} + \frac{3}{7} a^{5} - \frac{3}{14} a^{3} + \frac{3}{7} a^{2} + \frac{1}{7} a - \frac{3}{14}$, $\frac{1}{14} a^{13} - \frac{3}{14} a^{10} + \frac{2}{7} a^{9} + \frac{1}{7} a^{8} - \frac{1}{2} a^{7} + \frac{3}{7} a^{6} + \frac{2}{7} a^{5} - \frac{3}{14} a^{4} + \frac{2}{7} a^{3} + \frac{3}{7} a^{2} + \frac{3}{14} a - \frac{1}{7}$, $\frac{1}{238} a^{14} - \frac{1}{238} a^{13} + \frac{81}{238} a^{11} + \frac{13}{34} a^{10} - \frac{43}{119} a^{9} - \frac{37}{238} a^{8} - \frac{1}{238} a^{7} + \frac{20}{119} a^{6} + \frac{9}{34} a^{5} + \frac{11}{34} a^{4} + \frac{43}{119} a^{3} + \frac{39}{238} a^{2} - \frac{19}{238} a - \frac{48}{119}$, $\frac{1}{547424321626447769607586} a^{15} + \frac{241563759632345905509}{273712160813223884803793} a^{14} - \frac{7326560096139752275027}{547424321626447769607586} a^{13} + \frac{2510575694117618460143}{273712160813223884803793} a^{12} - \frac{13137184917917360920426}{39101737259031983543399} a^{11} + \frac{185442151139956295879467}{547424321626447769607586} a^{10} + \frac{119349606682719827290805}{273712160813223884803793} a^{9} + \frac{62528667482558335347987}{273712160813223884803793} a^{8} - \frac{244940925603841051835839}{547424321626447769607586} a^{7} + \frac{90407225564249052065484}{273712160813223884803793} a^{6} - \frac{97340509693909835725475}{273712160813223884803793} a^{5} + \frac{4040434821210847695081}{78203474518063967086798} a^{4} - \frac{19285445861059413494387}{273712160813223884803793} a^{3} + \frac{14564629180149368258810}{273712160813223884803793} a^{2} - \frac{92658268470305478442337}{547424321626447769607586} a + \frac{204429314162039851588791}{547424321626447769607586}$
Class group and class number
$C_{10}$, which has order $10$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1065003.66499 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\wr C_4$ (as 16T172):
| A solvable group of order 64 |
| The 13 conjugacy class representatives for $C_2\wr C_4$ |
| Character table for $C_2\wr C_4$ |
Intermediate fields
| \(\Q(\sqrt{53}) \), 4.0.148877.1, 4.2.19663.1, 4.2.1042139.1, 8.4.1004087378693.1, 8.0.1004087378693.1, 8.0.1086053695321.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 8 siblings: | data not computed |
| Degree 16 siblings: | data not computed |
| Degree 32 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{4}$ | R | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $7$ | 7.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 7.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 7.4.2.1 | $x^{4} + 35 x^{2} + 441$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 7.8.6.2 | $x^{8} - 49 x^{4} + 3969$ | $4$ | $2$ | $6$ | $D_4$ | $[\ ]_{4}^{2}$ | |
| $53$ | 53.8.6.1 | $x^{8} - 1643 x^{4} + 1755625$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |
| 53.8.6.1 | $x^{8} - 1643 x^{4} + 1755625$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |