Normalized defining polynomial
\( x^{16} + 740 x^{14} + 210530 x^{12} + 29844200 x^{10} + 2305396000 x^{8} + 99381186000 x^{6} + 2334546117000 x^{4} + 27325267380000 x^{2} + 122963703210000 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(28273563576220552539381170176000000000000=2^{44}\cdot 5^{12}\cdot 37^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $337.45$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 37$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(2960=2^{4}\cdot 5\cdot 37\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{2960}(1,·)$, $\chi_{2960}(43,·)$, $\chi_{2960}(961,·)$, $\chi_{2960}(2441,·)$, $\chi_{2960}(1227,·)$, $\chi_{2960}(1363,·)$, $\chi_{2960}(2707,·)$, $\chi_{2960}(1849,·)$, $\chi_{2960}(2843,·)$, $\chi_{2960}(1067,·)$, $\chi_{2960}(2369,·)$, $\chi_{2960}(1523,·)$, $\chi_{2960}(369,·)$, $\chi_{2960}(2547,·)$, $\chi_{2960}(1481,·)$, $\chi_{2960}(889,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{370} a^{4}$, $\frac{1}{370} a^{5}$, $\frac{1}{370} a^{6}$, $\frac{1}{1110} a^{7} + \frac{1}{1110} a^{5} + \frac{1}{3} a^{3} + \frac{1}{3} a$, $\frac{1}{410700} a^{8} + \frac{1}{1110} a^{6} + \frac{1}{1110} a^{4} + \frac{1}{3} a^{2}$, $\frac{1}{410700} a^{9} - \frac{1}{3} a$, $\frac{1}{1232100} a^{10} - \frac{1}{1232100} a^{8} - \frac{1}{3330} a^{6} - \frac{1}{3330} a^{4} - \frac{2}{9} a^{2}$, $\frac{1}{3696300} a^{11} + \frac{1}{1848150} a^{9} + \frac{1}{4995} a^{7} + \frac{11}{9990} a^{5} - \frac{8}{27} a^{3}$, $\frac{1}{2297620080000} a^{12} - \frac{17}{110889000} a^{10} - \frac{7}{22177800} a^{8} + \frac{4393}{8391600} a^{6} + \frac{19}{59940} a^{4} + \frac{17}{90} a^{2} - \frac{271}{560}$, $\frac{1}{6892860240000} a^{13} - \frac{17}{332667000} a^{11} + \frac{47}{66533400} a^{9} - \frac{10727}{25174800} a^{7} + \frac{47}{35964} a^{5} - \frac{133}{270} a^{3} - \frac{271}{1680} a$, $\frac{1}{9367397066160000} a^{14} - \frac{47}{1170924633270000} a^{12} - \frac{65213}{452094453000} a^{10} + \frac{153317}{253172893680} a^{8} - \frac{9311797}{8553138300} a^{6} - \frac{7577}{6788205} a^{4} - \frac{541679}{2283120} a^{2} + \frac{11993}{31710}$, $\frac{1}{28102191198480000} a^{15} - \frac{47}{3512773899810000} a^{13} - \frac{65213}{1356283359000} a^{11} + \frac{153317}{759518681040} a^{9} - \frac{9311797}{25659414900} a^{7} - \frac{7577}{20364615} a^{5} + \frac{1741441}{6849360} a^{3} + \frac{43703}{95130} a$
Class group and class number
$C_{2}\times C_{10}\times C_{10}\times C_{10}\times C_{59170}$, which has order $118340000$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1116781.2621991208 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^2\times C_4$ (as 16T2):
| An abelian group of order 16 |
| The 16 conjugacy class representatives for $C_4\times C_2^2$ |
| Character table for $C_4\times C_2^2$ |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.2.0.1}{2} }^{8}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/41.1.0.1}{1} }^{16}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.22.7 | $x^{8} + 2 x^{4} + 16 x + 4$ | $4$ | $2$ | $22$ | $C_4\times C_2$ | $[3, 4]^{2}$ |
| 2.8.22.7 | $x^{8} + 2 x^{4} + 16 x + 4$ | $4$ | $2$ | $22$ | $C_4\times C_2$ | $[3, 4]^{2}$ | |
| $5$ | 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |
| 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| $37$ | 37.8.6.1 | $x^{8} - 1147 x^{4} + 855625$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |
| 37.8.6.1 | $x^{8} - 1147 x^{4} + 855625$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |