Normalized defining polynomial
\( x^{16} - 2 x^{15} - 118 x^{13} - 19 x^{12} + 1575 x^{11} + 2191 x^{10} - 2153 x^{9} - 351 x^{8} + 178093 x^{7} + 1088971 x^{6} + 1254015 x^{5} + 4489289 x^{4} - 3024586 x^{3} + 37624698 x^{2} - 30305084 x + 27952369 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(282632865427655493724677478329=3^{14}\cdot 79^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $69.29$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 79$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{3} a^{4} + \frac{1}{3} a^{3} + \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{3} a^{5} - \frac{1}{3} a^{3} + \frac{1}{3} a^{2} - \frac{1}{3}$, $\frac{1}{3} a^{6} - \frac{1}{3} a^{3} + \frac{1}{3}$, $\frac{1}{3} a^{7} + \frac{1}{3} a^{3} - \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{9} a^{8} - \frac{1}{9} a^{7} + \frac{1}{9} a^{6} - \frac{1}{9} a^{5} + \frac{1}{9} a^{4} - \frac{1}{9} a^{3} - \frac{2}{9} a^{2} + \frac{2}{9} a - \frac{2}{9}$, $\frac{1}{9} a^{9} - \frac{1}{3} a^{3} - \frac{2}{9}$, $\frac{1}{9} a^{10} + \frac{1}{3} a^{3} + \frac{1}{9} a + \frac{1}{3}$, $\frac{1}{27} a^{11} - \frac{1}{27} a^{10} + \frac{1}{27} a^{9} + \frac{1}{9} a^{7} + \frac{1}{9} a^{6} - \frac{1}{9} a^{5} + \frac{1}{9} a^{3} - \frac{2}{27} a^{2} - \frac{4}{27} a + \frac{1}{27}$, $\frac{1}{27} a^{12} + \frac{1}{27} a^{9} - \frac{1}{9} a^{6} - \frac{5}{27} a^{3} - \frac{2}{27}$, $\frac{1}{27} a^{13} + \frac{1}{27} a^{10} - \frac{1}{9} a^{7} + \frac{4}{27} a^{4} + \frac{1}{3} a^{3} + \frac{7}{27} a + \frac{1}{3}$, $\frac{1}{100565406549} a^{14} - \frac{1629271729}{100565406549} a^{13} - \frac{466101233}{100565406549} a^{12} - \frac{740891528}{100565406549} a^{11} + \frac{1373292350}{100565406549} a^{10} - \frac{1478932082}{100565406549} a^{9} + \frac{910035359}{33521802183} a^{8} + \frac{2642880763}{33521802183} a^{7} + \frac{4746759677}{33521802183} a^{6} + \frac{8683068640}{100565406549} a^{5} + \frac{14661365900}{100565406549} a^{4} + \frac{43151587060}{100565406549} a^{3} + \frac{47560487767}{100565406549} a^{2} - \frac{4094079856}{100565406549} a - \frac{26564420702}{100565406549}$, $\frac{1}{60757450349264980935983168845406588504811} a^{15} + \frac{169214321389528997346409998886}{60757450349264980935983168845406588504811} a^{14} - \frac{197485895524862049513758181179407834}{11491857452102322855302282739815885853} a^{13} - \frac{170603293701447699835527158473049847359}{20252483449754993645327722948468862834937} a^{12} + \frac{121363906321549239959510595889117000249}{60757450349264980935983168845406588504811} a^{11} + \frac{2105628811891902905173453521710363292287}{60757450349264980935983168845406588504811} a^{10} - \frac{387865584428788515814424806532802215389}{60757450349264980935983168845406588504811} a^{9} - \frac{1045717573170153060018107508824083929514}{20252483449754993645327722948468862834937} a^{8} + \frac{847202339735863528682799575369049086323}{20252483449754993645327722948468862834937} a^{7} + \frac{7363492778322540258966770732735369611903}{60757450349264980935983168845406588504811} a^{6} - \frac{9064674768224595385213539598652439796268}{60757450349264980935983168845406588504811} a^{5} + \frac{5693699342448505966972462204288081429886}{60757450349264980935983168845406588504811} a^{4} + \frac{1372774783814323061106022808934706334915}{20252483449754993645327722948468862834937} a^{3} + \frac{29227365850327193732503501959448270655224}{60757450349264980935983168845406588504811} a^{2} - \frac{25533484345961333047235975239811069077456}{60757450349264980935983168845406588504811} a + \frac{2302583869994434165683662631599881469}{11491857452102322855302282739815885853}$
Class group and class number
$C_{9}\times C_{45}$, which has order $405$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{447819570218099108578978}{16312280889859006552799587577253} a^{15} - \frac{776447297270410559508584}{16312280889859006552799587577253} a^{14} - \frac{85366470772241708639}{3085356703207680452581726419} a^{13} - \frac{16891266432459467908323241}{5437426963286335517599862525751} a^{12} - \frac{23510237484420382565948105}{16312280889859006552799587577253} a^{11} + \frac{715841357751691776996595633}{16312280889859006552799587577253} a^{10} + \frac{965633997582310631241198347}{16312280889859006552799587577253} a^{9} - \frac{463437248974121129477313745}{5437426963286335517599862525751} a^{8} + \frac{1044425641146379164165065177}{5437426963286335517599862525751} a^{7} + \frac{88458450765297933664826477899}{16312280889859006552799587577253} a^{6} + \frac{512818893870282039269007375079}{16312280889859006552799587577253} a^{5} + \frac{585039662020316113188539884696}{16312280889859006552799587577253} a^{4} + \frac{80830511397661107960970714730}{604158551476259501955540280639} a^{3} + \frac{1172355580190632694211379995574}{16312280889859006552799587577253} a^{2} + \frac{17490594491240727183611258109337}{16312280889859006552799587577253} a + \frac{434026318966723503117149939}{3085356703207680452581726419} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 609706.825434 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 16 |
| The 7 conjugacy class representatives for $QD_{16}$ |
| Character table for $QD_{16}$ |
Intermediate fields
| \(\Q(\sqrt{-79}) \), \(\Q(\sqrt{237}) \), \(\Q(\sqrt{-3}) \), \(\Q(\sqrt{-3}, \sqrt{-79})\), 4.2.168507.2 x2, 4.0.2133.1 x2, 8.0.28394609049.1, 8.2.531632265224427.1 x4 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 8 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 3 | Data not computed | ||||||
| $79$ | 79.8.6.2 | $x^{8} + 395 x^{4} + 56169$ | $4$ | $2$ | $6$ | $Q_8$ | $[\ ]_{4}^{2}$ |
| 79.8.6.2 | $x^{8} + 395 x^{4} + 56169$ | $4$ | $2$ | $6$ | $Q_8$ | $[\ ]_{4}^{2}$ | |