Normalized defining polynomial
\( x^{16} - 3 x^{15} + 30 x^{14} - 78 x^{13} + 397 x^{12} - 692 x^{11} + 1985 x^{10} - 175 x^{9} - 1948 x^{8} + 23065 x^{7} - 33643 x^{6} + 41132 x^{5} + 120605 x^{4} - 371078 x^{3} + 788212 x^{2} - 782887 x + 565529 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(2823369678315287559234816064=2^{6}\cdot 97^{4}\cdot 163^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $51.96$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 97, 163$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{30} a^{14} - \frac{1}{10} a^{13} - \frac{1}{30} a^{12} - \frac{1}{2} a^{11} + \frac{4}{15} a^{10} + \frac{13}{30} a^{9} - \frac{1}{10} a^{8} - \frac{4}{15} a^{7} + \frac{1}{6} a^{6} + \frac{1}{10} a^{5} + \frac{2}{5} a^{4} - \frac{1}{30} a^{3} - \frac{7}{30} a^{2} - \frac{7}{30} a - \frac{1}{30}$, $\frac{1}{12665749932710566529364641018676183870} a^{15} - \frac{3058774252044138068767219545063683}{422191664423685550978821367289206129} a^{14} + \frac{236177793827750408831738865435463766}{1266574993271056652936464101867618387} a^{13} - \frac{590096437828834094370204469471365408}{2110958322118427754894106836446030645} a^{12} - \frac{5150783082299131651615968193513996177}{12665749932710566529364641018676183870} a^{11} - \frac{2432113768277108449718423562420210833}{12665749932710566529364641018676183870} a^{10} + \frac{1021392348314787729804442631911167761}{2110958322118427754894106836446030645} a^{9} + \frac{5301118279223284441768966967441263603}{12665749932710566529364641018676183870} a^{8} + \frac{2680054362473416029408692465910401291}{12665749932710566529364641018676183870} a^{7} + \frac{493529535293185179844309072005284453}{2110958322118427754894106836446030645} a^{6} - \frac{1634883794221664310779412859587663243}{4221916644236855509788213672892061290} a^{5} - \frac{829167397751239236923810265104327327}{2533149986542113305872928203735236774} a^{4} + \frac{349311297591434222007462260966554802}{1266574993271056652936464101867618387} a^{3} - \frac{1757604603336962642876170188014769599}{6332874966355283264682320509338091935} a^{2} + \frac{17302639675836000685274139568985833}{86751711867880592666881102867645095} a + \frac{1792015422429772000577445696821500499}{4221916644236855509788213672892061290}$
Class group and class number
$C_{4}$, which has order $4$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 4659971.81232 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 6144 |
| The 69 conjugacy class representatives for t16n1656 are not computed |
| Character table for t16n1656 is not computed |
Intermediate fields
| 4.4.26569.1, 8.4.5647294088.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/7.6.0.1}{6} }{,}\,{\href{/LocalNumberField/7.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.12.0.1}{12} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.12.0.1}{12} }{,}\,{\href{/LocalNumberField/41.4.0.1}{4} }$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.4.6.1 | $x^{4} - 6 x^{2} + 4$ | $2$ | $2$ | $6$ | $C_2^2$ | $[3]^{2}$ |
| 2.6.0.1 | $x^{6} - x + 1$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| 2.6.0.1 | $x^{6} - x + 1$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| 97 | Data not computed | ||||||
| $163$ | 163.2.0.1 | $x^{2} - x + 11$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 163.2.0.1 | $x^{2} - x + 11$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 163.6.4.1 | $x^{6} + 5216 x^{3} + 35363339$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ | |
| 163.6.4.1 | $x^{6} + 5216 x^{3} + 35363339$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ | |