Normalized defining polynomial
\( x^{16} + 20 x^{14} + 172 x^{12} + 740 x^{10} + 1714 x^{8} + 1892 x^{6} + 2476 x^{4} + 452 x^{2} + 1369 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(2820427866999756888735744=2^{40}\cdot 3^{12}\cdot 13^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $33.74$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{12} a^{8} - \frac{1}{6} a^{6} - \frac{1}{6} a^{2} + \frac{1}{12}$, $\frac{1}{12} a^{9} - \frac{1}{6} a^{7} - \frac{1}{6} a^{3} + \frac{1}{12} a$, $\frac{1}{12} a^{10} - \frac{1}{3} a^{6} - \frac{1}{6} a^{4} - \frac{1}{4} a^{2} + \frac{1}{6}$, $\frac{1}{12} a^{11} - \frac{1}{3} a^{7} - \frac{1}{6} a^{5} - \frac{1}{4} a^{3} + \frac{1}{6} a$, $\frac{1}{24} a^{12} - \frac{1}{24} a^{8} - \frac{1}{2} a^{7} - \frac{1}{3} a^{6} + \frac{3}{8} a^{4} - \frac{1}{2} a^{3} - \frac{1}{6} a^{2} - \frac{3}{8}$, $\frac{1}{24} a^{13} - \frac{1}{24} a^{9} - \frac{1}{3} a^{7} + \frac{3}{8} a^{5} - \frac{1}{2} a^{4} - \frac{1}{6} a^{3} - \frac{3}{8} a - \frac{1}{2}$, $\frac{1}{1136337144} a^{14} + \frac{64093}{378779048} a^{12} + \frac{36411253}{1136337144} a^{10} - \frac{4628115}{378779048} a^{8} - \frac{1}{2} a^{7} + \frac{176176983}{378779048} a^{6} - \frac{1}{2} a^{5} - \frac{34091753}{1136337144} a^{4} - \frac{1}{2} a^{3} + \frac{514477613}{1136337144} a^{2} - \frac{1}{2} a - \frac{90953119}{378779048}$, $\frac{1}{42044474328} a^{15} - \frac{59168203}{3503706194} a^{13} - \frac{1478704939}{42044474328} a^{11} - \frac{18742681}{568168572} a^{9} - \frac{2475276353}{14014824776} a^{7} - \frac{1}{2} a^{6} + \frac{1991903909}{10511118582} a^{5} - \frac{2038051909}{14014824776} a^{3} - \frac{1}{2} a^{2} - \frac{400581917}{7007412388} a$
Class group and class number
$C_{2}\times C_{2}\times C_{6}$, which has order $24$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 22694.8390411 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times SD_{16}$ (as 16T48):
| A solvable group of order 32 |
| The 14 conjugacy class representatives for $C_2\times SD_{16}$ |
| Character table for $C_2\times SD_{16}$ |
Intermediate fields
| \(\Q(\sqrt{3}) \), \(\Q(\sqrt{2}) \), \(\Q(\sqrt{6}) \), 4.4.7488.1, 4.4.29952.1, \(\Q(\sqrt{2}, \sqrt{3})\), 8.0.104963309568.1, 8.0.419853238272.1, 8.8.3588489216.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 16 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{8}$ | R | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $3$ | 3.8.6.1 | $x^{8} + 9 x^{4} + 36$ | $4$ | $2$ | $6$ | $Q_8$ | $[\ ]_{4}^{2}$ |
| 3.8.6.1 | $x^{8} + 9 x^{4} + 36$ | $4$ | $2$ | $6$ | $Q_8$ | $[\ ]_{4}^{2}$ | |
| $13$ | 13.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 13.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 13.4.2.1 | $x^{4} + 39 x^{2} + 676$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 13.4.2.1 | $x^{4} + 39 x^{2} + 676$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 13.4.2.1 | $x^{4} + 39 x^{2} + 676$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |