Normalized defining polynomial
\( x^{16} - 4 x^{15} + 27 x^{14} - 78 x^{13} + 280 x^{12} - 578 x^{11} + 1404 x^{10} - 2304 x^{9} + 3384 x^{8} - 5082 x^{7} + 5100 x^{6} - 3542 x^{5} + 6427 x^{4} + 36 x^{3} + 2469 x^{2} - 1600 x + 268 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(28196723068685041735089=3^{8}\cdot 73^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $25.30$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 73$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{3}$, $\frac{1}{4} a^{7} - \frac{1}{2} a^{3} - \frac{1}{4} a - \frac{1}{2}$, $\frac{1}{4} a^{8} - \frac{1}{4} a^{2}$, $\frac{1}{8} a^{9} - \frac{1}{8} a^{8} - \frac{1}{8} a^{3} - \frac{3}{8} a^{2} - \frac{1}{2}$, $\frac{1}{8} a^{10} - \frac{1}{8} a^{8} - \frac{1}{8} a^{4} - \frac{1}{2} a^{3} - \frac{3}{8} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{16} a^{11} + \frac{1}{16} a^{8} - \frac{1}{4} a^{6} + \frac{3}{16} a^{5} + \frac{3}{16} a^{2} + \frac{1}{4}$, $\frac{1}{32} a^{12} - \frac{1}{32} a^{11} - \frac{1}{16} a^{10} + \frac{1}{32} a^{9} + \frac{1}{32} a^{8} - \frac{1}{8} a^{7} + \frac{7}{32} a^{6} + \frac{5}{32} a^{5} - \frac{3}{16} a^{4} - \frac{5}{32} a^{3} - \frac{5}{32} a^{2} + \frac{1}{8} a + \frac{1}{8}$, $\frac{1}{64} a^{13} + \frac{1}{64} a^{11} + \frac{3}{64} a^{10} + \frac{1}{32} a^{9} - \frac{3}{64} a^{8} + \frac{3}{64} a^{7} + \frac{3}{16} a^{6} - \frac{5}{64} a^{5} - \frac{15}{64} a^{4} - \frac{5}{32} a^{3} - \frac{17}{64} a^{2} - \frac{1}{8} a + \frac{1}{16}$, $\frac{1}{64} a^{14} - \frac{1}{64} a^{12} + \frac{1}{64} a^{11} - \frac{1}{32} a^{10} + \frac{3}{64} a^{9} - \frac{3}{64} a^{8} + \frac{1}{16} a^{7} - \frac{3}{64} a^{6} - \frac{5}{64} a^{5} + \frac{5}{32} a^{4} - \frac{15}{64} a^{3} + \frac{11}{32} a^{2} - \frac{5}{16} a + \frac{1}{8}$, $\frac{1}{23398297185480249344} a^{15} - \frac{158480774445969737}{23398297185480249344} a^{14} + \frac{1311114411674297}{2924787148185031168} a^{13} + \frac{55781018441955429}{11699148592740124672} a^{12} - \frac{166187204515055021}{11699148592740124672} a^{11} - \frac{2449217733925719}{91399598380782224} a^{10} - \frac{23903961953256033}{5849574296370062336} a^{9} + \frac{107834262482084325}{5849574296370062336} a^{8} - \frac{108746415567967339}{5849574296370062336} a^{7} - \frac{1720076609426508863}{11699148592740124672} a^{6} + \frac{652067558997697521}{11699148592740124672} a^{5} - \frac{26026721287363143}{365598393523128896} a^{4} - \frac{8421215496220242981}{23398297185480249344} a^{3} + \frac{3565921100530634525}{23398297185480249344} a^{2} - \frac{1691721319714703499}{5849574296370062336} a - \frac{185566276888154649}{5849574296370062336}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{1602690543}{993771917312} a^{15} + \frac{5615017511}{993771917312} a^{14} - \frac{5032347911}{124221489664} a^{13} + \frac{52419930421}{496885958656} a^{12} - \frac{197225627325}{496885958656} a^{11} + \frac{5748155779}{7763843104} a^{10} - \frac{474902863985}{248442979328} a^{9} + \frac{717905793173}{248442979328} a^{8} - \frac{1065623117819}{248442979328} a^{7} + \frac{3368238515281}{496885958656} a^{6} - \frac{3085337478591}{496885958656} a^{5} + \frac{65593966495}{15527686208} a^{4} - \frac{10497194745973}{993771917312} a^{3} - \frac{2598294039187}{993771917312} a^{2} - \frac{1382385421115}{248442979328} a + \frac{537934268375}{248442979328} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 686254.798714 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_4\wr C_2$ (as 16T42):
| A solvable group of order 32 |
| The 14 conjugacy class representatives for $C_4\wr C_2$ |
| Character table for $C_4\wr C_2$ |
Intermediate fields
| \(\Q(\sqrt{-3}) \), \(\Q(\sqrt{73}) \), \(\Q(\sqrt{-219}) \), 4.0.657.1 x2, 4.2.15987.1 x2, \(\Q(\sqrt{-3}, \sqrt{73})\), 8.0.167918799033.1, 8.0.31510377.1, 8.0.2300257521.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 8 siblings: | data not computed |
| Degree 16 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.2.0.1}{2} }^{8}$ | R | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $73$ | 73.8.6.2 | $x^{8} + 1533 x^{4} + 644809$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |
| 73.8.4.1 | $x^{8} + 138554 x^{4} - 389017 x^{2} + 4799302729$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |