Normalized defining polynomial
\( x^{16} - 4 x^{15} + 6 x^{14} + 4 x^{13} + 25 x^{12} - 180 x^{11} + 380 x^{10} - 148 x^{9} - 468 x^{8} + 932 x^{7} + 398 x^{6} - 8760 x^{5} + 32372 x^{4} - 47628 x^{3} + 35356 x^{2} - 20536 x + 22801 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(28179280429056000000000000=2^{44}\cdot 3^{8}\cdot 5^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $38.96$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(240=2^{4}\cdot 3\cdot 5\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{240}(19,·)$, $\chi_{240}(1,·)$, $\chi_{240}(139,·)$, $\chi_{240}(137,·)$, $\chi_{240}(203,·)$, $\chi_{240}(17,·)$, $\chi_{240}(83,·)$, $\chi_{240}(91,·)$, $\chi_{240}(227,·)$, $\chi_{240}(113,·)$, $\chi_{240}(233,·)$, $\chi_{240}(107,·)$, $\chi_{240}(49,·)$, $\chi_{240}(211,·)$, $\chi_{240}(169,·)$, $\chi_{240}(121,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{55596303289} a^{14} + \frac{16382379243}{55596303289} a^{13} + \frac{20953930284}{55596303289} a^{12} + \frac{6477145158}{55596303289} a^{11} + \frac{17955751672}{55596303289} a^{10} - \frac{24412065323}{55596303289} a^{9} - \frac{19918246386}{55596303289} a^{8} - \frac{13560435651}{55596303289} a^{7} - \frac{9393549066}{55596303289} a^{6} + \frac{12087710323}{55596303289} a^{5} + \frac{4688673615}{55596303289} a^{4} + \frac{5911424417}{55596303289} a^{3} - \frac{26399649497}{55596303289} a^{2} + \frac{26761162343}{55596303289} a + \frac{122407760}{368187439}$, $\frac{1}{238121384763772503024721} a^{15} - \frac{325682038}{1576962813005115914071} a^{14} - \frac{58472315091159780161786}{238121384763772503024721} a^{13} - \frac{42744824106939050964894}{238121384763772503024721} a^{12} - \frac{17090011930379281566809}{238121384763772503024721} a^{11} + \frac{67161471700856513011824}{238121384763772503024721} a^{10} + \frac{41496318655772378520907}{238121384763772503024721} a^{9} - \frac{85350038742924799364142}{238121384763772503024721} a^{8} + \frac{102741143127180109340461}{238121384763772503024721} a^{7} + \frac{49401750535699846830356}{238121384763772503024721} a^{6} - \frac{109320842214432228236295}{238121384763772503024721} a^{5} - \frac{60415989759252443052684}{238121384763772503024721} a^{4} + \frac{63870021587060321745550}{238121384763772503024721} a^{3} + \frac{16732124151306198874329}{238121384763772503024721} a^{2} - \frac{43231624262340546872328}{238121384763772503024721} a + \frac{294013733053906168877}{1576962813005115914071}$
Class group and class number
$C_{4}\times C_{8}$, which has order $32$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 16694.3932435 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| An abelian group of order 16 |
| The 16 conjugacy class representatives for $C_4^2$ |
| Character table for $C_4^2$ |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $3$ | 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 5 | Data not computed | ||||||