Normalized defining polynomial
\( x^{16} - 4 x^{14} + 8 x^{12} + 36 x^{10} + 398 x^{8} - 876 x^{6} + 968 x^{4} + 44 x^{2} + 1 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(2817928042905600000000=2^{40}\cdot 3^{8}\cdot 5^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $21.91$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4} - \frac{1}{2}$, $\frac{1}{2} a^{5} - \frac{1}{2} a$, $\frac{1}{4} a^{6} - \frac{1}{4} a^{4} + \frac{1}{4} a^{2} - \frac{1}{4}$, $\frac{1}{4} a^{7} - \frac{1}{4} a^{5} + \frac{1}{4} a^{3} - \frac{1}{4} a$, $\frac{1}{8} a^{8} - \frac{1}{8}$, $\frac{1}{8} a^{9} - \frac{1}{8} a$, $\frac{1}{16} a^{10} - \frac{1}{16} a^{8} - \frac{1}{2} a^{3} + \frac{7}{16} a^{2} - \frac{1}{2} a - \frac{7}{16}$, $\frac{1}{16} a^{11} - \frac{1}{16} a^{9} + \frac{7}{16} a^{3} - \frac{1}{2} a^{2} - \frac{7}{16} a - \frac{1}{2}$, $\frac{1}{336} a^{12} + \frac{1}{84} a^{10} + \frac{5}{112} a^{8} - \frac{1}{12} a^{6} + \frac{17}{112} a^{4} + \frac{4}{21} a^{2} + \frac{37}{336}$, $\frac{1}{672} a^{13} - \frac{1}{672} a^{12} + \frac{1}{168} a^{11} - \frac{1}{168} a^{10} - \frac{9}{224} a^{9} + \frac{9}{224} a^{8} - \frac{1}{24} a^{7} + \frac{1}{24} a^{6} + \frac{17}{224} a^{5} - \frac{17}{224} a^{4} + \frac{2}{21} a^{3} - \frac{2}{21} a^{2} + \frac{79}{672} a - \frac{79}{672}$, $\frac{1}{491232} a^{14} - \frac{5}{163744} a^{12} + \frac{4559}{491232} a^{10} + \frac{28835}{491232} a^{8} + \frac{56023}{491232} a^{6} + \frac{119719}{491232} a^{4} - \frac{1}{2} a^{3} + \frac{4339}{163744} a^{2} - \frac{1}{2} a - \frac{46651}{491232}$, $\frac{1}{982464} a^{15} - \frac{1}{982464} a^{14} - \frac{5}{327488} a^{13} + \frac{5}{327488} a^{12} - \frac{26143}{982464} a^{11} + \frac{26143}{982464} a^{10} + \frac{59537}{982464} a^{9} - \frac{59537}{982464} a^{8} - \frac{66785}{982464} a^{7} + \frac{66785}{982464} a^{6} - \frac{3089}{982464} a^{5} + \frac{3089}{982464} a^{4} + \frac{55509}{327488} a^{3} - \frac{55509}{327488} a^{2} + \frac{45455}{982464} a - \frac{45455}{982464}$
Class group and class number
$C_{4}$, which has order $4$
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{15761}{491232} a^{14} - \frac{62437}{491232} a^{12} + \frac{41431}{163744} a^{10} + \frac{570067}{491232} a^{8} + \frac{2097709}{163744} a^{6} - \frac{13531939}{491232} a^{4} + \frac{14982515}{491232} a^{2} + \frac{226999}{163744} \) (order $8$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 62960.4974605 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$Q_8:C_2^2$ (as 16T23):
| A solvable group of order 32 |
| The 17 conjugacy class representatives for $Q_8 : C_2^2$ |
| Character table for $Q_8 : C_2^2$ |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 8 siblings: | data not computed |
| Degree 16 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.20.53 | $x^{8} + 4 x^{5} + 2 x^{4} + 2$ | $8$ | $1$ | $20$ | $Q_8:C_2$ | $[2, 3, 3]^{2}$ |
| 2.8.20.53 | $x^{8} + 4 x^{5} + 2 x^{4} + 2$ | $8$ | $1$ | $20$ | $Q_8:C_2$ | $[2, 3, 3]^{2}$ | |
| $3$ | 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $5$ | 5.8.4.1 | $x^{8} + 10 x^{6} + 125 x^{4} + 2500$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 5.8.4.1 | $x^{8} + 10 x^{6} + 125 x^{4} + 2500$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |