Normalized defining polynomial
\( x^{16} - 24 x^{14} + 246 x^{12} - 1356 x^{10} + 4253 x^{8} - 6828 x^{6} + 2304 x^{4} + 4872 x^{2} + 1156 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(2817928042905600000000=2^{40}\cdot 3^{8}\cdot 5^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $21.91$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{4}$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{5}$, $\frac{1}{4} a^{8} - \frac{1}{4} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{68} a^{9} + \frac{3}{17} a^{7} + \frac{19}{68} a^{5} - \frac{1}{2} a^{3} + \frac{1}{34} a$, $\frac{1}{136} a^{10} - \frac{1}{136} a^{9} + \frac{3}{34} a^{8} - \frac{3}{34} a^{7} + \frac{19}{136} a^{6} + \frac{49}{136} a^{5} - \frac{1}{4} a^{4} + \frac{1}{4} a^{3} - \frac{33}{68} a^{2} - \frac{1}{68} a$, $\frac{1}{136} a^{11} - \frac{1}{136} a^{9} - \frac{1}{136} a^{7} + \frac{59}{136} a^{5} - \frac{1}{2} a^{4} - \frac{4}{17} a^{3} - \frac{1}{2} a^{2} - \frac{13}{68} a$, $\frac{1}{136} a^{12} - \frac{1}{136} a^{9} + \frac{11}{136} a^{8} - \frac{3}{34} a^{7} + \frac{5}{68} a^{6} - \frac{19}{136} a^{5} + \frac{1}{68} a^{4} - \frac{1}{4} a^{3} + \frac{11}{34} a^{2} - \frac{1}{68} a$, $\frac{1}{136} a^{13} + \frac{7}{68} a^{7} - \frac{3}{136} a^{5} - \frac{1}{2} a^{4} + \frac{5}{68} a^{3} - \frac{1}{2} a^{2} - \frac{11}{68} a$, $\frac{1}{1504568} a^{14} + \frac{1709}{1504568} a^{12} - \frac{173}{88504} a^{10} + \frac{101501}{1504568} a^{8} - \frac{7824}{188071} a^{6} - \frac{4701}{32708} a^{4} + \frac{198}{851} a^{2} - \frac{865}{11063}$, $\frac{1}{3009136} a^{15} - \frac{1}{3009136} a^{14} + \frac{1709}{3009136} a^{13} - \frac{1709}{3009136} a^{12} - \frac{173}{177008} a^{11} + \frac{173}{177008} a^{10} - \frac{537}{177008} a^{9} + \frac{274641}{3009136} a^{8} + \frac{7151}{188071} a^{7} + \frac{3912}{188071} a^{6} + \frac{3755}{16354} a^{5} + \frac{3654}{8177} a^{4} + \frac{1247}{3404} a^{3} - \frac{1247}{3404} a^{2} + \frac{291417}{752284} a - \frac{9333}{44252}$
Class group and class number
$C_{4}$, which has order $4$
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{753}{188071} a^{14} - \frac{63165}{752284} a^{12} + \frac{556321}{752284} a^{10} - \frac{634605}{188071} a^{8} + \frac{6325515}{752284} a^{6} - \frac{291435}{32708} a^{4} - \frac{23821}{14467} a^{2} + \frac{33015}{22126} \) (order $8$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 38660.8350882 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times D_4:C_2$ (as 16T18):
| A solvable group of order 32 |
| The 20 conjugacy class representatives for $C_2 \times (C_4\times C_2):C_2$ |
| Character table for $C_2 \times (C_4\times C_2):C_2$ |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 16 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.20.55 | $x^{8} + 4 x^{6} + 4 x^{5} + 6 x^{4} + 2$ | $8$ | $1$ | $20$ | $Q_8:C_2$ | $[2, 3, 3]^{2}$ |
| 2.8.20.55 | $x^{8} + 4 x^{6} + 4 x^{5} + 6 x^{4} + 2$ | $8$ | $1$ | $20$ | $Q_8:C_2$ | $[2, 3, 3]^{2}$ | |
| $3$ | 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $5$ | 5.8.4.1 | $x^{8} + 10 x^{6} + 125 x^{4} + 2500$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 5.8.4.1 | $x^{8} + 10 x^{6} + 125 x^{4} + 2500$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |