Normalized defining polynomial
\( x^{16} - 4 x^{15} + 32 x^{14} - 100 x^{13} + 404 x^{12} - 928 x^{11} + 2420 x^{10} - 4040 x^{9} + 7335 x^{8} - 8520 x^{7} + 10940 x^{6} - 7456 x^{5} + 6844 x^{4} - 300 x^{3} + 1088 x^{2} + 2052 x + 481 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(2817928042905600000000=2^{40}\cdot 3^{8}\cdot 5^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $21.91$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{453504790397956820708159} a^{15} + \frac{84362855579352310984135}{453504790397956820708159} a^{14} + \frac{216783314796593521496310}{453504790397956820708159} a^{13} - \frac{44835795857385482248345}{453504790397956820708159} a^{12} - \frac{226133466891318454767694}{453504790397956820708159} a^{11} - \frac{14965898724259142359616}{34884983876765909285243} a^{10} + \frac{152590898376892990056707}{453504790397956820708159} a^{9} - \frac{63795338975763515483271}{453504790397956820708159} a^{8} + \frac{33864947995475581086689}{453504790397956820708159} a^{7} + \frac{101106983369259736933018}{453504790397956820708159} a^{6} + \frac{147941876267049950280326}{453504790397956820708159} a^{5} + \frac{207272131926589931214655}{453504790397956820708159} a^{4} + \frac{150458941842472035931510}{453504790397956820708159} a^{3} - \frac{128504237494766956530008}{453504790397956820708159} a^{2} + \frac{5236640058405095899882}{453504790397956820708159} a + \frac{3118365913838100522634}{34884983876765909285243}$
Class group and class number
$C_{4}$, which has order $4$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{6390320664779526378}{1881762615759156932399} a^{15} + \frac{25242093090669797052}{1881762615759156932399} a^{14} - \frac{193355886477336250238}{1881762615759156932399} a^{13} + \frac{594936306216511661984}{1881762615759156932399} a^{12} - \frac{2277757385644700292090}{1881762615759156932399} a^{11} + \frac{388746998065888538268}{144750970443012071723} a^{10} - \frac{12280366141692585662350}{1881762615759156932399} a^{9} + \frac{19398342970838963432476}{1881762615759156932399} a^{8} - \frac{32081775881453278623878}{1881762615759156932399} a^{7} + \frac{34096998689172835760250}{1881762615759156932399} a^{6} - \frac{38778629267380595871246}{1881762615759156932399} a^{5} + \frac{22207309604970974402273}{1881762615759156932399} a^{4} - \frac{18660116159885336866412}{1881762615759156932399} a^{3} - \frac{1019264956854439670322}{1881762615759156932399} a^{2} - \frac{2873012245665627956864}{1881762615759156932399} a - \frac{236664777441252900804}{144750970443012071723} \) (order $12$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 25454.3718839 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times D_4:C_2$ (as 16T18):
| A solvable group of order 32 |
| The 20 conjugacy class representatives for $C_2 \times (C_4\times C_2):C_2$ |
| Character table for $C_2 \times (C_4\times C_2):C_2$ |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 16 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $3$ | 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $5$ | 5.8.4.1 | $x^{8} + 10 x^{6} + 125 x^{4} + 2500$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 5.8.4.1 | $x^{8} + 10 x^{6} + 125 x^{4} + 2500$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |